cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133162 Trajectory of 1 under the morphism 1 -> {1,1,2,1}, 2 -> {2}.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, Oct 09 2007, Oct 10 2007

Keywords

Comments

It can be shown that this is lim_{t -> oo} S_t, where S_0 = 1, S_{t+1} = S_t S_t 2 S_t.
Suggested by A131989: a(n) = length of n-th run of 1's in A131989.
For a proof of this see the Comments of A131989. - Michel Dekking, Oct 19 2019

Crossrefs

Programs

  • Mathematica
    Nest[Function[l, {Flatten[(l /. {1 -> {1,1,2,1}, 2 -> {2} })] }], {1}, 5] (* Georg Fischer, Jul 19 2019 *)

Formula

Denote the sequence by a(1), a(2), ...
Block t, that is, S_t, extends from n=1 through n=(3^(t+1)-1)/2.
Given n, to find a(n): first find t from
p = (3^t-1)/2 < n <= (3^(t+1)-1)/2.
Then if n=3^t, a(n) = 2. Otherwise, a(n) = a(n'), where
n' = n-p if n<3^t, otherwise n' = n-2p-1.