This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A133179 #11 Aug 11 2017 06:07:19 %S A133179 1,1,1,3,1,3,5,15,1,3,5,15,17,51,85,255,1,3,5,15,17,51,85,255,257,771, %T A133179 1285,3855,4369,13107,21845,65535,1,3,5,15,17,51,85,255,257,771,1285, %U A133179 3855,4369,13107,21845,65535 %N A133179 A modular binomial sum transform of 2^n . %H A133179 G. C. Greubel, <a href="/A133179/b133179.txt">Table of n, a(n) for the first 50 rows, flattened</a> %F A133179 a(n) = Sum_{k=0..floor(n/2)} mod(binomial(n,k),2) * 2^k. %e A133179 A034868 is: %e A133179 1; %e A133179 1; %e A133179 1, 2; %e A133179 1, 3; %e A133179 1, 4, 6; %e A133179 1, 5, 10 ;... %e A133179 A034868 modulo 2: %e A133179 1; %e A133179 1; %e A133179 1, 0; %e A133179 1, 1; %e A133179 1, 0, 0; %e A133179 1, 1, 0 ;... %e A133179 a(0)=1*2^0 = 1; %e A133179 a(1)=1*2^0 = 1; %e A133179 a(2)=1*2^0+0*2^1 = 1; %e A133179 a(3)=1*2^0+1*2^1 = 3; %e A133179 a(4)=1*2^0+0*2^1+0*2^2 = 1 %e A133179 a(5)=1*2^0+1*2^1+0*2^2 = 3 %t A133179 A133179[n_] := Sum[2^k*Mod[Binomial[n, k], 2], {k, 0, Floor[n/2]}]; Table[A133179[n], {n,0,50}] (* _G. C. Greubel_, Aug 11 2017 *) %Y A133179 Cf. A034868, A048896, A101692, A130047. %K A133179 nonn,tabf %O A133179 0,4 %A A133179 _Philippe Deléham_, Oct 10 2007