cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133217 Indices of decagonal numbers (A001107) that are also triangular (A000217).

This page as a plain text file.
%I A133217 #20 Apr 03 2019 03:03:01
%S A133217 0,1,2,20,55,667,1856,22646,63037,769285,2141390,26133032,72744211,
%T A133217 887753791,2471161772,30157495850,83946756025,1024467105097,
%U A133217 2851718543066,34801724077436,96874483708207,1182234151527715,3290880727535960,40161159427864862
%N A133217 Indices of decagonal numbers (A001107) that are also triangular (A000217).
%C A133217 For n>0, a(n) = (A055979(n) - A056161(n))/2, with those two sequences related through the Diophantine equation 2x^2 + 3x + 2 = r^2. - _Richard R. Forberg_, Nov 24 2013
%H A133217 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1, 34, -34, -1, 1).
%F A133217 For n>5, a(n) = 34*a(n-2) - a(n-4) - 12.
%F A133217 For n>6, a(n) = a(n-1) + 34*a(n-2) - 34*a(n-3) - a(n-4) + a(n-5).
%F A133217 For n>1, a(n) = 1/16 * ((2*sqrt(2) + (-1)^n)*(1 + sqrt(2))^(2*n - 3) - (2*sqrt(2) - (-1)^n)*(1 - sqrt(2))^(2*n - 3) + 6).
%F A133217 For n>1, a(n) = ceiling (1/16*(2*sqrt(2) + (-1)^n)*(1 + sqrt(2))^(2*n - 3)).
%F A133217 G.f.: ( 1 - 33*x^2 + 18*x^3 + 2*x^4 ) / ((1 - x ) * (1 - 6*x + x^2 ) * (1 + 6*x + x^2)).
%F A133217 lim (n -> Infinity, a(2n+1)/a(2n)) = 1/7*(43 + 30*sqrt(2)).
%F A133217 lim (n -> Infinity, a(2n)/a(2n-1)) = 1/7*(11 + 6*sqrt(2)).
%e A133217 The third number which is both decagonal (A001107) and triangular (A000217) is A133216(3)=10. As this is the second decagonal number, we have a(3) = 2.
%t A133217 LinearRecurrence[{1, 34, -34, -1, 1} , {0, 1, 2, 20, 55, 667}, 24] (* first term 0 corrected by _Georg Fischer_, Apr 02 2019 *)
%Y A133217 Cf. A000217, A001107, A077443, A077442, A133216, A133218.
%K A133217 nonn
%O A133217 1,3
%A A133217 _Richard Choulet_, Oct 11 2007; _Ant King_, Nov 04 2011
%E A133217 Entry revised by _Max Alekseyev_, Nov 06 2011