cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133218 Indices of triangular numbers (A000217) that are also decagonal (A001107).

This page as a plain text file.
%I A133218 #17 Apr 02 2019 15:44:43
%S A133218 0,1,4,55,154,1885,5248,64051,178294,2175865,6056764,73915375,
%T A133218 205751698,2510946901,6989500984,85298279275,237437281774,
%U A133218 2897630548465,8065878079348,98434140368551,274002417416074,3343863141982285,9308016314067184,113592912687029155
%N A133218 Indices of triangular numbers (A000217) that are also decagonal (A001107).
%H A133218 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1, 34, -34, -1, 1).
%F A133218 For n>5, a(n) = 34*a(n-2) - a(n-4) + 16.
%F A133218 For n>6, a(n) = a(n-1) + 34*a(n-2) - 34*a(n-3) - a(n-4) + a(n-5).
%F A133218 For n>1, a(n) = 1/8 * ((4 + sqrt(2)*(-1)^n)*(1+sqrt(2))^(2*n - 3) + (4 - sqrt(2)*(-1)^n)*(1-sqrt(2))^(2*n-3) - 4).
%F A133218 a(n) = floor(1/8 * (4 + sqrt(2)*(-1)^n)* (1+sqrt(2))^(2*n-3)).
%F A133218 G.f.: x^2*(2*x^4+3*x^3-17*x^2-3*x-1)/((x-1)*(x^2+6*x+1)*(x^2-6*x+1)).
%F A133218 lim (n -> Infinity, a(2n+1)/a(2n)) = 1/7*(43 + 30*sqrt(2)).
%F A133218 lim (n -> Infinity, a(2n)/a(2n-1)) = 1/7*(11 + 6*sqrt(2)).
%e A133218 The third number which is both triangular (A000217) and decagonal (A001107) is A133216(3)=10. Since this is the fourth triangular number, we have a(3) = 4.
%t A133218 LinearRecurrence[{1, 34, -34, -1, 1 }, {0, 1, 4, 55, 154, 1885}, 24 ]
%Y A133218 Cf. A000217, A001107, A133216, A133217.
%K A133218 nonn
%O A133218 1,3
%A A133218 _Richard Choulet_, Oct 11 2007; _Ant King_, Nov 04 2011
%E A133218 Entry revised by _Max Alekseyev_, Nov 06 2011