cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133232 Triangle T(n,k) read by rows with a minimum number of prime powers A100994 for which the least common multiple of T(n,1),..,T(n,n) is A003418(n).

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 1, 3, 4, 1, 1, 3, 4, 5, 1, 1, 3, 4, 5, 1, 1, 1, 3, 4, 5, 1, 7, 1, 1, 3, 1, 5, 1, 7, 8, 1, 1, 1, 1, 5, 1, 7, 8, 9, 1, 1, 1, 1, 5, 1, 7, 8, 9, 1, 1, 1, 1, 1, 5, 1, 7, 8, 9, 1, 11, 1, 1, 1, 1, 5, 1, 7, 8, 9, 1, 11, 1, 1, 1, 1, 1, 5, 1, 7, 8, 9, 1, 11, 1, 13, 1, 1, 1, 1, 5, 1, 7, 8, 9, 1, 11, 1
Offset: 1

Views

Author

Mats Granvik, Oct 13 2007

Keywords

Comments

Checked up to 28th row. The rest of the ones in the table are there for the least common multiple to calculate correctly.

Examples

			2 occurs 2*1 = 2 times in column 2.
3 occurs 3*2 = 6 times in column 3.
4 occurs 4*1 = 4 times in column 4.
5 occurs 5*4 = 20 times in column 5.
k occurs A133936(k) times in column k. The first rows of the triangle and the least common multiple of the rows are:
lcm{1} = 1
lcm{1, 2} = 2
lcm{1, 2, 3} = 6
lcm{1, 1, 3, 4} = 12
lcm{1, 1, 3, 4, 5} = 60
lcm{1, 1, 3, 4, 5, 1} = 60
lcm{1, 1, 3, 4, 5, 1, 7} = 420
lcm{1, 1, 3, 1, 5, 1, 7, 8} = 840
lcm{1, 1, 1, 1, 5, 1, 7, 8, 9} = 2520
		

Crossrefs

Programs

  • Excel
    =if(and(row()>=column();row()A120112));column();1)
    
  • Excel
    =if(and(n>=k; n < A014963*A100994); A100994; 1) - Mats Granvik, Jan 21 2008
  • Maple
    A120112 := proc(n) 1-ilcm(seq(i,i=1..n+1))/ilcm(seq(i,i=1..n)) ; end proc:
    A133232 := proc(n) if n < k*(1+abs(A120112(k-1))) then k else 1; end if; end proc:
    seq(seq(A133232(n,k),k=1..n),n=1..15) ; # R. J. Mathar, Nov 23 2010
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1, LCM @@ Range[n]];
    c[n_] := 1 - b[n+1]/b[n];
    T[n_, k_] := If[n < k*(1+Abs[c[k-1]]), k, 1];
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 01 2021 *)

Formula

T(n,k) = if nA120112(k-1)| then k, else 1 (1<=k<=n).
T(n,k) = if n < A014963(k)*A100994(k) then A100994(k), else 1 (1<=k<=n). - Mats Granvik, Jan 21 2008

Extensions

Indices added to formulas by R. J. Mathar, Nov 23 2010