This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A133233 #18 Jan 01 2018 04:13:11 %S A133233 1,1,1,1,1,2,1,1,2,3,1,1,1,3,4,1,1,1,3,4,5,1,1,1,3,4,5,1,1,1,1,3,4,5, %T A133233 1,7,1,1,1,3,1,5,1,7,8,1,1,1,1,1,5,1,7,8,9,1,1,1,1,1,5,1,7,8,9,1,1,1, %U A133233 1,1,1,5,1,7,8,9,1,11,1,1,1,1,1,5,1,7,8,9,1,11,1,1,1,1,1,1,5,1,7,8,9,1,11 %N A133233 Triangle A133232 read by rows with an additional column T(n,0)=1 added to the left. %C A133233 Attaching an additional 1 does not change the composition compared to A133232 since neither the LCM over the elements of a row nor their product is affected. %H A133233 Mats Granvik, <a href="/A133233/b133233.txt">Table of n, a(n) for n = 0..434</a> %F A133233 T(n,0) = 1. %F A133233 T(n,k) = A133232(n,k), k>0. %e A133233 The first rows of the triangle and the least common multiple of the rows are: %e A133233 lcm{1} = 1 %e A133233 lcm{1, 1} = 1 %e A133233 lcm{1, 1, 2} = 2 %e A133233 lcm{1, 1, 2, 3} = 6 %e A133233 lcm{1, 1, 1, 3, 4} = 12 %e A133233 lcm{1, 1, 1, 3, 4, 5} = 60 %e A133233 lcm{1, 1, 1, 3, 4, 5, 1} = 60 %e A133233 lcm{1, 1, 1, 3, 4, 5, 1, 7} = 420 %e A133233 lcm{1, 1, 1, 3, 1, 5, 1, 7, 8} = 840 %e A133233 lcm{1, 1, 1, 1, 1, 5, 1, 7, 8, 9} = 2520 %e A133233 Multiplying the terms in the rows produces the same result: %e A133233 1 = 1 %e A133233 1*1 = 1 %e A133233 1*1*2 = 2 %e A133233 1*1*2*3 = 6 %e A133233 1*1*1*3*4 = 12 %e A133233 1*1*1*3*4*5 = 60 %e A133233 1*1*1*3*4*5*1 = 60 %e A133233 1*1*1*3*4*5*1*7 = 420 %e A133233 1*1*1*3*1*5*1*7*8 = 840 %e A133233 1*1*1*1*1*5*1*7*8*9 = 2520 %Y A133233 Cf. A003418, A120112, A000961, A014963. %K A133233 nonn,tabl %O A133233 0,6 %A A133233 _Mats Granvik_, Oct 13 2007 %E A133233 Removed information which duplicates A133232; offset set to 0 - _R. J. Mathar_, Nov 23 2010