cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133238 Dimensions of certain Lie algebra (see reference for precise definition).

This page as a plain text file.
%I A133238 #16 Jan 11 2024 10:59:49
%S A133238 1,52,1053,12376,100776,627912,3187041,13748020,51949755,175847880,
%T A133238 542393670,1544927904,4107092288,10278624864,24388573014,55188666312,
%U A133238 119696471453,249869263644,503865726155,984563860280,1869304764600,3456658569000,6238533257775
%N A133238 Dimensions of certain Lie algebra (see reference for precise definition).
%H A133238 Paolo Xausa, <a href="/A133238/b133238.txt">Table of n, a(n) for n = 0..10000</a>
%H A133238 J. M. Landsberg and L. Manivel, <a href="https://doi.org/10.1016/j.aim.2005.02.001">The sextonions and E7 1/2</a>, Adv. Math. 201 (2006), 143-179. [Th. 7.1, case a=1]
%F A133238 Empirical g.f.: (x^8+36*x^7+341*x^6+1208*x^5+1820*x^4+1208*x^3+341*x^2+36*x+1) / (x-1)^16. - _Colin Barker_, Jul 27 2013
%p A133238 b:=binomial; t71:= proc(a,k) ((3*a+2*k+5)/(3*a+5)) * b(k+2*a+3,k)*b(k+5*a/2+3,k)*b(k+3*a+4,k)/(b(k+a/2+1,k)*b(k+a+1,k)); end; [seq(t71(1,k),k=0..30)];
%t A133238 t71[a_, k_] := (3a+2k+5) / (3a+5) Binomial[k+2a+3,k] Binomial[k+5/2a+3,k] Binomial[k+3a+4,k] / (Binomial[k+a/2+1,k] Binomial[k+a+1,k]);
%t A133238 Array[t71[1,#]&,30,0] (* _Paolo Xausa_, Jan 11 2024 *)
%Y A133238 The cases a = -4/3, -1, -2/3, 0, 1, 2, 4, 6, 8 of Th. 7.1 of Landsberg and Manivel give sequences A005408, A000578, A085462, A107942, A133238 (this entry), A133239, A133240, A133241 and A030650 respectively. See also triangle in A128894.
%K A133238 nonn
%O A133238 0,2
%A A133238 _N. J. A. Sloane_, Oct 15 2007