cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133239 Dimensions of certain Lie algebra (see reference for precise definition).

This page as a plain text file.
%I A133239 #12 Jan 11 2024 10:59:21
%S A133239 1,78,2430,43758,537966,4969107,36685506,225961450,1198006524,
%T A133239 5597569328,23474156784,89644484592,315415779120,1032380107812,
%U A133239 3168537039954,9180278955210,25252641533405,66272502260250,166635797864250,402908157902250,939815697512250
%N A133239 Dimensions of certain Lie algebra (see reference for precise definition).
%H A133239 Paolo Xausa, <a href="/A133239/b133239.txt">Table of n, a(n) for n = 0..10000</a>
%H A133239 J. M. Landsberg and L. Manivel, <a href="https://doi.org/10.1016/j.aim.2005.02.001">The sextonions and E7 1/2</a>, Adv. Math. 201 (2006), 143-179. [Th. 7.1, case a=2]
%p A133239 b:=binomial; t71:= proc(a,k) ((3*a+2*k+5)/(3*a+5)) * b(k+2*a+3,k)*b(k+5*a/2+3,k)*b(k+3*a+4,k)/(b(k+a/2+1,k)*b(k+a+1,k)); end; [seq(t71(2,k),k=0..30)];
%t A133239 t71[a_, k_] := (3a+2k+5) / (3a+5) Binomial[k+2a+3,k] Binomial[k+5/2a+3,k] Binomial[k+3a+4,k] / (Binomial[k+a/2+1,k] Binomial[k+a+1,k]);
%t A133239 Array[t71[2,#]&,30,0] (* _Paolo Xausa_, Jan 11 2024 *)
%K A133239 nonn
%O A133239 0,2
%A A133239 _N. J. A. Sloane_, Oct 15 2007