cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133240 Dimensions of certain Lie algebra (see reference for precise definition).

This page as a plain text file.
%I A133240 #12 Jan 11 2024 11:00:17
%S A133240 1,133,7371,238602,5248750,85709988,1101296924,11604306012,
%T A133240 103402141164,797856027500,5431803835220,33125614508610,
%U A133240 183226228734150,928793118827175,4352687787515625,18999500104801125,77742635367237750,299864450702202750
%N A133240 Dimensions of certain Lie algebra (see reference for precise definition).
%H A133240 Paolo Xausa, <a href="/A133240/b133240.txt">Table of n, a(n) for n = 0..10000</a>
%H A133240 J. M. Landsberg and L. Manivel, <a href="https://doi.org/10.1016/j.aim.2005.02.001">The sextonions and E7 1/2</a>, Adv. Math. 201 (2006), 143-179. [Th. 7.1, case a=4; Th. 7.2(i), case a = 4]
%p A133240 b:=binomial; t71:= proc(a,k) ((3*a+2*k+5)/(3*a+5)) * b(k+2*a+3,k)*b(k+5*a/2+3,k)*b(k+3*a+4,k)/(b(k+a/2+1,k)*b(k+a+1,k)); end; [seq(t71(4,k),k=0..30)];
%t A133240 t71[a_, k_] := (3a+2k+5) / (3a+5) Binomial[k+2a+3,k] Binomial[k+5/2a+3,k] Binomial[k+3a+4,k] / (Binomial[k+a/2+1,k] Binomial[k+a+1,k]);
%t A133240 Array[t71[4,#]&,30,0] (* _Paolo Xausa_, Jan 11 2024 *)
%K A133240 nonn
%O A133240 0,2
%A A133240 _N. J. A. Sloane_, Oct 15 2007