cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133241 Dimensions of certain Lie algebra (see reference for precise definition).

This page as a plain text file.
%I A133241 #13 Jan 11 2024 11:10:03
%S A133241 1,190,15504,749360,24732110,605537790,11619550320,181746027600,
%T A133241 2386644625950,26923893369075,265762390788000,2330056309932000,
%U A133241 18372187417457250,131651129456894250,865026329992488000,5251754282090616000,29657709797595709500,156694210053607278000
%N A133241 Dimensions of certain Lie algebra (see reference for precise definition).
%H A133241 Paolo Xausa, <a href="/A133241/b133241.txt">Table of n, a(n) for n = 0..10000</a>
%H A133241 J. M. Landsberg and L. Manivel, <a href="https://doi.org/10.1016/j.aim.2005.02.001">The sextonions and E7 1/2</a>, Adv. Math. 201 (2006), 143-179. [Th. 7.1, case a=6]
%p A133241 b:=binomial; t71:= proc(a,k) ((3*a+2*k+5)/(3*a+5)) * b(k+2*a+3,k)*b(k+5*a/2+3,k)*b(k+3*a+4,k)/(b(k+a/2+1,k)*b(k+a+1,k)); end; [seq(t71(6,k),k=0..30)];
%t A133241 t71[a_, k_] := (3a+2k+5) / (3a+5) Binomial[k+2a+3, k] Binomial[k+5/2a+3, k] Binomial[k+3a+4, k] / (Binomial[k+a/2+1, k] Binomial[k+a+1, k]);
%t A133241 Array[t71[6, #]&, 30, 0] (* _Paolo Xausa_, Jan 11 2024 *)
%K A133241 nonn
%O A133241 0,2
%A A133241 _N. J. A. Sloane_, Oct 15 2007