This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A133298 #6 Sep 08 2022 08:45:31 %S A133298 2,41,1727,130917,17245160,3546873073,1046002784253,417182980579609, %T A133298 215861313302976046,140463714074395109081,112191246261394235358555, %U A133298 107867952671976721983260413,122856922623618324408724634164 %N A133298 a(n) = 1 + Sum_{i=1..n} Sum_{j=1..n} Sum_{k=1..n} i^(j+k). %C A133298 p divides a(p) for prime p>3. p^2 divides a(p) for prime p=7. Nonprime n dividing a(n) are {1,15}. %H A133298 G. C. Greubel, <a href="/A133298/b133298.txt">Table of n, a(n) for n = 1..210</a> %F A133298 a(n) = 1 + Sum_{i=1..n} Sum_{j=1..n} Sum_{k=1..n} i^(j+k). %F A133298 a(n) = 1 + n^2 + Sum_{j=2..n} (j*(j^n - 1)/(j-1))^2. %t A133298 Table[Sum[(i(i^n-1)/(i-1))^2, {i,2,n}] +n^2 +1,{n,20}] %o A133298 (PARI) vector(20, n, 1+n^2 + sum(j=2,n, (j*(j^n-1)/(j-1))^2)) \\ _G. C. Greubel_, Aug 02 2019 %o A133298 (Magma) [2] cat [1+n^2 + (&+[(j*(j^n-1)/(j-1))^2: j in [2..n]]): n in [1..20]]; // _G. C. Greubel_, Aug 02 2019 %o A133298 (Sage) [1+n^2 + sum((j*(j^n-1)/(j-1))^2 for j in (2..n)) for n in (1..20)] # _G. C. Greubel_, Aug 02 2019 %o A133298 (GAP) List([1..20], n-> 1 + n^2 + Sum([2..n], j-> (j*(j^n-1)/(j-1))^2) ); # _G. C. Greubel_, Aug 02 2019 %Y A133298 Cf. A124405. %Y A133298 Cf. A062970, A086787. %K A133298 nonn %O A133298 1,1 %A A133298 _Alexander Adamchuk_, Oct 17 2007