A133299 Fractal sequence of the Stolarsky array, A035506.
1, 1, 1, 2, 1, 2, 3, 1, 4, 2, 3, 5, 1, 6, 4, 2, 7, 3, 5, 8, 1, 9, 6, 4, 10, 2, 11, 7, 3, 12, 5, 8, 13, 1, 14, 9, 6, 15, 4, 10, 16, 2, 17, 11, 7, 18, 3, 19, 12, 5, 20, 8, 13, 21, 1, 22, 14, 9, 23, 6, 15, 24, 4, 25, 10, 16, 26, 2, 27, 17, 11, 28, 7, 18, 29, 3, 30, 19, 12, 31, 5, 32, 20, 8, 33
Offset: 1
Keywords
Examples
As a fractal sequence, if each first occurrence of each n is deleted, then the resulting sequence is the same as the original. For the fractal sequence of the Wythoff array, see A003603.
References
- D. R. Morrison, A Stolarsky Array of Wythoff Pairs, A Collection of Manuscripts Related to the Fibonacci Sequence, edited by V. E. Hoggatt Jr., M. Bicknell-Johnson, published by The Fibonacci Association, (1980) pp. 134-136. - Casey Mongoven, Sep 10 2011
Links
- Eric Weisstein's World of Mathematics, Stolarsky Array
Programs
-
Maple
A035506 := proc(r,c) local tau,a,b,d,i ; tau := (1+sqrt(5))/2 ; a := floor( r*(1+tau)-tau/2) ; b := round(a*tau) ; if c = 1 then RETURN(a) ; else if c =2 then RETURN(b) ; else for i from 1 to c-2 do d := a+b ; a := b; b := d ; od: RETURN(d) ; fi ; fi ; end: A133299 := proc(n) local row,col ; for row from 1 do for col from 1 do stola := A035506(row,col) ; if stola = n then RETURN(row) ; elif stola > n then break ; fi ; od: od: end: seq(A133299(n),n=1..100) ; # R. J. Mathar, Nov 21 2007
-
Mathematica
A035506[r_, c_] := Module[{tau = GoldenRatio, a, b, d, i}, a = Floor[r*(1 + tau) - tau/2]; b = Round[a*tau]; If[c == 1, Return[a], If[c == 2, Return[b], For[i = 1, i <= c - 2, i++, d = a + b; a = b; b = d]; Return[d]]]]; a[n_] := Module[{row, col}, For[row = 1, True, row++, For[col = 1, True, col++, stola = A035506[row, col] ; If[stola == n, Return[row], If[stola > n, Break[]]]]]]; Array[a, 100] (* Jean-François Alcover, Mar 22 2020, after R. J. Mathar *)
Formula
A035506(a(n),k)=n for some k>=1. - R. J. Mathar, Nov 21 2007
a(n) = 1+A098861(n). - Casey Mongoven, Sep 10 2011
Extensions
Better definition from R. J. Mathar, Oct 22 2007
More terms from R. J. Mathar, Nov 21 2007
Definition now conforms to others; comment replaced - Clark Kimberling, Oct 29 2009