cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133317 Dimensions of certain Lie algebra (see reference for precise definition).

This page as a plain text file.
%I A133317 #17 Jan 10 2024 16:31:39
%S A133317 1,35,405,2695,12740,47628,149940,413820,1029105,2351635,5010005,
%T A133317 10061415,19211920,35119280,61799760,105163632,173707785,279397755,
%U A133317 438775645,674334815,1016206884,1504211500,2190324500,3141625500,4443791625,6205210011,8561787885
%N A133317 Dimensions of certain Lie algebra (see reference for precise definition).
%C A133317 This is the case P(5,n) of the family of sequences defined in A132458. - Ottavio D'Antona (dantona(AT)dico.unimi.it), Oct 31 2007
%H A133317 Paolo Xausa, <a href="/A133317/b133317.txt">Table of n, a(n) for n = 0..10000</a>
%H A133317 J. M. Landsberg and L. Manivel, <a href="https://doi.org/10.1016/j.aim.2005.02.001">The sextonions and E7 1/2</a>, Adv. Math. 201 (2006), 143-179. [Th. 7.2(i), case a=2]
%F A133317 Empirical g.f.: (x+1)*(x^4+24*x^3+76*x^2+24*x+1) / (x-1)^10. - _Colin Barker_, Jul 27 2013
%p A133317 b:=binomial; t72a:= proc(a,k) ((2*a+2*k+1)/(2*a+1)) * b(k+3*a/2-1,k)*b(k+3*a/2+1,k)*b(k+2*a,k)/(b(k+a/2-1,k)*b(k+a/2+1,k)); end; [seq(t72a(2,k),k=0..40)];
%t A133317 t72a[a_, k_] := (2k+2a+1) / (2a+1) Binomial[k+3/2a-1, k] Binomial[k+3/2a+1, k] Binomial[k+2a,k] / (Binomial[k+a/2-1, k] Binomial[k+a/2+1, k]);
%t A133317 Array[t72a[2, #]&, 30, 0] (* _Paolo Xausa_, Jan 10 2024 *)
%K A133317 nonn
%O A133317 0,2
%A A133317 _N. J. A. Sloane_, Oct 19 2007