This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A133342 #77 Dec 27 2021 11:08:35 %S A133342 1,11,1101,111111,11001101001,1101101010101011,111011111010011111101, %T A133342 111110101100011100011101011111, %U A133342 110001110011100010001101110001110010001,11001100100101010011111101111110101010010010010011 %N A133342 Concatenation of binary expansion of n-th row of Pascal's triangle. %C A133342 Binary analog of A003590. More generally, this sequence is the 2nd row of the matrix whose k-th row is the concatenation of the base-k expression of n-th row of Pascal's triangle. The 10th row of that array is A003590. %C A133342 a(n) is a repunit for n = 0, 1, 3, but otherwise not since C(n,1) = n has a 0-bit apart from at n=2^k-1 and there C(n,2) = n*(n-1)/2 == 1 (mod 4) has a 0-bit. - _Kevin Ryde_ and _Bernard Schott_, Nov 11 2021 %H A133342 Harvey P. Dale, <a href="/A133342/b133342.txt">Table of n, a(n) for n = 0..38</a> %F A133342 a(n) = Concatenate[k=1..n] binomial(n, k) (base 2). %F A133342 a(n) = Concatenate[i=A000217(n)..A000217(n+1)] A007088(A007318(i)). %e A133342 a(0) = 1 because the 0th row of Pascal's triangle is 1. %e A133342 a(1) = 11 because the 1st row of Pascal's triangle is 1,1 which concatenates to 11. %e A133342 a(2) = 1101 because the 2nd row of Pascal's triangle is 1,2,1 which in binary is 1,10,1 which concatenates to 1101. %e A133342 a(3) = 111111 because the 3rd row of Pascal's triangle is 1,3,3,1 which in binary is 1,11,11,1 which concatenates to 111111. %e A133342 a(4) = 110010101001 because the 4th row of Pascal's triangle is 1,4,6,4,1 which in binary is 1,100,110,100,1 which concatenates to 11001101001. %e A133342 a(5) = 1101101010101011 because the 5th row of Pascal's triangle is 1,5,10,10,5,1 which in binary is 1,101,1010,1010,101,1 which concatenates to 1101101010101011. %e A133342 a(6) = 111011111010011111101 because the 6th row of Pascal's triangle is 1,6,15,20,15,6,1 which in binary is 1,110,1111,10100,1111,110,1 which concatenates to 111011111010011111101. %e A133342 The array of base k concatenations begins: %e A133342 k/n 0 1 2 3 4 %e A133342 1.| 1 11 1111 11111111 1111111111111111 2^(n-1) repetitions of 1 %e A133342 2.| 1 11 1101 111111 11001101001 %e A133342 3.| 1 11 121 110101 11120111 %e A133342 4.| 1 11 121 1331 11012101 %e A133342 5.| 1 11 121 1331 141141 %e A133342 6.| 1 11 121 1331 141041 %p A133342 catL := proc(L) local resul,a ; resul:=0 ; for a in L do resul := resul*10^(max(ilog10(a)+1,1))+a ; od: RETURN(resul) ; end: A133342 := proc(n) local prow,k ; prow := [1] ; for k from 1 to n do prow := [op(prow), convert(binomial(n,k),binary) ] ; od: catL(prow) ; end: seq(A133342(n),n=0..11) ; # _R. J. Mathar_, Jan 08 2008 %t A133342 FromDigits[Flatten[IntegerDigits[#,2]]]&/@Table[Binomial[n,k],{n,0,10},{k,0,n}] (* _Harvey P. Dale_, Apr 12 2020 *) %Y A133342 Cf. A000217, A002275, A003590, A007318, A349304. %K A133342 base,easy,nonn %O A133342 0,2 %A A133342 _Jonathan Vos Post_, Oct 20 2007 %E A133342 Corrected and extended by _R. J. Mathar_, Jan 08 2008