A133347 a(n) = smallest k such that prime(n+3) = prime(n) + (prime(n) mod k), or 0 if no such k exists.
0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 19, 27, 29, 27, 33, 39, 47, 49, 55, 59, 19, 61, 65, 15, 29, 31, 31, 29, 29, 89, 23, 113, 41, 121, 15, 27, 47, 21, 17, 31, 15, 33, 61, 25, 57, 57, 193, 71, 43, 31, 43, 221, 73, 233, 27, 83, 257, 37, 29, 51, 51, 21, 11, 97, 289, 41, 313, 107, 67
Offset: 1
Keywords
Examples
For n = 1 we have prime(n) = 2, prime(n+3) = 7; there is no k such that 7 - 2 = 5 = (2 mod k), hence a(1) = 0. For n = 10 we have prime(n) = 29, prime(n+3) = 41; 17 is the smallest k such that 41 - 29 = 12 = (29 mod k), hence a(10) = 17. For n = 53 we have prime(n) = 241, prime(n+3) = 263; 73 is the smallest k such that 263 - 241 = 22 = (241 mod k), hence a(53) = 73.
Links
- Remi Eismann, Table of n, a(n) for n = 1..10000