cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133365 Number of 3-noncrossing RNA structures, i.e., the number of 3-noncrossing partial matchings over n vertices and without arcs of length 1.

Original entry on oeis.org

1, 1, 2, 5, 13, 36, 105, 321, 1018, 3334, 11216, 38635, 135835, 486337, 1769500, 6531796, 24425758, 92420026, 353444218, 1364933719, 5318450239, 20894505025, 82713826842, 329746065427, 1323179962753, 5341963415921, 21689519880470, 88533441655211
Offset: 1

Views

Author

Emma Y. Jin (emma(AT)cfc.nankai.edu.cn), Oct 26 2007

Keywords

Comments

a(n) is the sum of entries in row n of the triangle in A187253.
a(n) is asymptotically equal to 4!*10.4724*((5+sqrt(21))/2)^n/(n(n-1)(n-2)(n-3)(n-4)).

Examples

			a(4)=5 because we have ABAB, AIAI, AIIA, IAIA, and IIII, where pairs of A's and pairs of B's are assumed to be joined by an arc and the I's are isolated vertices.
		

Crossrefs

Programs

  • Maple
    c := proc (n) options operator, arrow: binomial(2*n, n)/(n+1) end proc: T := proc (n, k) if `mod`(n-k, 2) = 0 then sum((-1)^b*binomial(n-b, b)*binomial(n-2*b, k)*(c((1/2)*n-(1/2)*k-b)*c((1/2)*n-(1/2)*k-b+2)-c((1/2)*n-(1/2)*k-b+1)^2), b = 0 .. (1/2)*n-(1/2)*k) else 0 end if end proc: seq(add(T(n, k), k = 0 .. n), n = 1 .. 28);
  • Mathematica
    c = CatalanNumber;
    T[n_, k_] := If[EvenQ[m = n-k], Sum[(-1)^b*Binomial[n-b, b] * Binomial[n - 2*b, k] * (c[m/2-b]*c[m/2-b+2] - c[m/2-b+1]^2), {b, 0, m/2}], 0];
    a[n_] := Sum[T[n, k], {k, 0, n}];
    Array[a, 28] (* Jean-François Alcover, Nov 26 2017, from Maple *)

Formula

a(n) = Sum_{k=0..n} T(n,k), where T(n,k) = Sum((-1)^j*binomial(n-j,j)*binomial(n-2j,k)*[c((n-k)/2-2j)*c((n-k)/2-j+2)-c((n-k)/2-j+1)^2], j=0..(n-k)/2), and c(n)=A000108(n) are the Catalan numbers. [Perhaps this formula is using the convention that c(x) = 0 unless x is a nonnegative integer? - N. J. A. Sloane, Jul 24 2017]