A133366 Triangle T(n,k)read by rows given by [3,1,3,1,3,1,3,1,3,1,3,1,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.
1, 3, 1, 12, 7, 1, 57, 43, 11, 1, 300, 262, 90, 15, 1, 1686, 1618, 667, 153, 19, 1, 9912, 10159, 4745, 1336, 232, 23, 1, 60213, 64783, 33147, 10785, 2333, 327, 27, 1, 374988, 418786, 229726, 83286, 21098, 3722, 438, 31, 1
Offset: 0
Examples
Triangle begins: 1; 3, 1; 12, 7, 1; 57, 43, 11, 1; 300, 262, 90, 15, 1; 1686, 1618, 667, 153, 19, 1; 9912, 10159, 4745, 1336, 232, 23, 1; 60213, 64783, 33147, 10785, 2333, 327, 27, 1; 374988, 418786, 229786, 83286, 21098, 3722, 438, 31, 1; ...
Formula
T(0,0)=1; T(n,k) = 0 if k < 0 or if k > n; T(n,0) = 3*T(n-1,0) + 3*T(n-1,1); T(n,k) = T(n-1,k-1) + 4*T(n-1,k) + 3*T(n-1,k+1) for k >= 1.
Sum_{k>=0} T(m,k)*T(n,k)*3^k = T(m+n,0)= A047891(m+n+1). - Philippe Deléham, Jan 24 2010
Comments