cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133370 Primes p such that p does not divide any term of the Apery sequence A005259 .

Original entry on oeis.org

2, 3, 7, 13, 23, 29, 43, 47, 53, 67, 71, 79, 83, 89, 101, 103, 107, 109, 113, 127, 131, 137, 149, 157, 167, 173, 199, 223, 229, 239, 263, 269, 277, 281, 311, 313, 317, 337, 349, 353, 359, 373, 383, 389, 397, 401, 409, 421, 449, 457, 461, 467, 479, 487, 491
Offset: 1

Views

Author

Philippe Deléham, Oct 27 2007

Keywords

Comments

Malik and Straub give arguments suggesting that this sequence is infinite. - N. J. A. Sloane, Aug 06 2017

Crossrefs

For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

Programs

  • Mathematica
    NeverDividesLucasSeqQ[a_, p_] := And @@ Table[Mod[a[n], p]>0, {n, 0, p-1}];
    A3[a_, b_, c_, n_ /; n < 0] = 0;
    A3[a_, b_, c_, 0] = 1;
    A3[a_, b_, c_, n_] := A3[a, b, c, n] = (((2n - 1)(a (n-1)^2 + a (n-1) + b)) A3[a, b, c, n-1] - c (n-1)^3 A3[a, b, c, n-2])/n^3;
    A3[a_, b_, c_, d_, n_ /; n < 0] = 0;
    Agamma[n_] := A3[17, 5, 1, n];
    Select[Range[1000], PrimeQ[#] && NeverDividesLucasSeqQ[Agamma, #]&] (* Jean-François Alcover, Aug 05 2018, copied from Amita Malik's notebook *)

Extensions

Terms a(16) onwards computed by Amita Malik - N. J. A. Sloane, Aug 21 2017