A133370 Primes p such that p does not divide any term of the Apery sequence A005259 .
2, 3, 7, 13, 23, 29, 43, 47, 53, 67, 71, 79, 83, 89, 101, 103, 107, 109, 113, 127, 131, 137, 149, 157, 167, 173, 199, 223, 229, 239, 263, 269, 277, 281, 311, 313, 317, 337, 349, 353, 359, 373, 383, 389, 397, 401, 409, 421, 449, 457, 461, 467, 479, 487, 491
Offset: 1
Keywords
Links
- Robert Price, Table of n, a(n) for n = 1..758
- Amita Malik and Armin Straub, Divisibility properties of sporadic Apéry-like numbers, Research in Number Theory, 2016, 2:5.
- Amita Malik, Mathematica notebook for generating this sequence and A260793, A291275-A291284
- Amita Malik, List of all primes up to 10000 in this sequence and in A260793, A291275-A291284, together with Mathematica code.
- E. Rowland, R. Yassawi, Automatic congruences for diagonals of rational functions, arXiv preprint arXiv:1310.8635 [math.NT], 2013.
Crossrefs
Programs
-
Mathematica
NeverDividesLucasSeqQ[a_, p_] := And @@ Table[Mod[a[n], p]>0, {n, 0, p-1}]; A3[a_, b_, c_, n_ /; n < 0] = 0; A3[a_, b_, c_, 0] = 1; A3[a_, b_, c_, n_] := A3[a, b, c, n] = (((2n - 1)(a (n-1)^2 + a (n-1) + b)) A3[a, b, c, n-1] - c (n-1)^3 A3[a, b, c, n-2])/n^3; A3[a_, b_, c_, d_, n_ /; n < 0] = 0; Agamma[n_] := A3[17, 5, 1, n]; Select[Range[1000], PrimeQ[#] && NeverDividesLucasSeqQ[Agamma, #]&] (* Jean-François Alcover, Aug 05 2018, copied from Amita Malik's notebook *)
Extensions
Terms a(16) onwards computed by Amita Malik - N. J. A. Sloane, Aug 21 2017
Comments