This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A133445 #18 Mar 16 2022 16:19:28 %S A133445 0,1,3,1,2,4,2,4,3,1,2,4,2,3,5,3,5,4,2,3,5,3,4,6,5,4,3,1,2,4,2,3,5,3, %T A133445 5,4,2,3,5,3,4,6,4,6,5,3,4,6,4,5,7,6,5,4,2,3,5,3,4,6,4,6,5,3,4,6,4,5, %U A133445 7,5,7,6,4,5,7,5,6,9,5,4,3,1,2,4,2,3,5,3,5,4,2 %N A133445 Write numbers in ternary under each other (right justified), read diagonals in SW-NE direction, sum digits. %C A133445 The digit sum of A102370 "sloping binary numbers" equals A089400. What about "sloping numbers" and their digit sums in other bases? %e A133445 Numbers written in ternary: %e A133445 0 %e A133445 1 %e A133445 2 %e A133445 10 %e A133445 11 %e A133445 12 %e A133445 20 %e A133445 21 %e A133445 22 %e A133445 100 %e A133445 101 %e A133445 102 %e A133445 ..... %e A133445 The NW-SE diagonals are: %e A133445 0 %e A133445 1 %e A133445 12 %e A133445 10 %e A133445 11 %e A133445 22 %e A133445 20 %e A133445 121 %e A133445 102 %e A133445 ...... %e A133445 giving 0, 1, 3, 1, 2, 4, 2, 4, 3, 1, 2, 4, ... %o A133445 (PARI) lista(nn) = {my(v = vector(nn), nb); for (n=1, nn, v[n] = digits(n-1, 3); nb = #v[n];); for (n=1, nn, if (#v[n] < nb, v[n] = concat(vector(nb-#v[n]), v[n]));); my(list = List()); for (n=nb, nn, my(s=0, pos=1); forstep(k=n, n-nb+1, -1, s += (v[k])[pos]; pos++;); listput(list, s);); Vec(list);} \\ _Michel Marcus_, Mar 16 2022 %Y A133445 Cf. A102370. %K A133445 nonn,base %O A133445 1,3 %A A133445 _Ctibor O. Zizka_, Dec 22 2007 %E A133445 New name using formula and more terms from _Michel Marcus_, Mar 16 2022