cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133501 Number of steps for "powertrain" operation to converge when started at n.

This page as a plain text file.
%I A133501 #10 Nov 26 2021 10:43:18
%S A133501 0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,5,2,3,3,1,1,1,3,
%T A133501 2,5,5,5,4,9,1,1,2,5,3,3,4,6,3,5,1,1,3,2,3,5,3,3,2,4,1,1,6,3,4,4,3,3,
%U A133501 8,2,1,1,6,6,2,2,3,5,3,2,1,1,5,3,4,4,5,4,3,7,1,1,2,5,4,2,3,3,2,4,1,1,1,1,1
%N A133501 Number of steps for "powertrain" operation to converge when started at n.
%C A133501 See A133500 for definition.
%C A133501 It is conjectured that every number converges to a fixed-point.
%H A133501 N. J. A. Sloane, <a href="/A133501/b133501.txt">Table of n, a(n) for n = 0..10000</a>
%H A133501 N. J. A. Sloane, <a href="/A133501/a133501.txt">Full trajectories of numbers from 1 to 10000</a>
%e A133501 39 -> 19683 -> 1594323 -> 38443359375 -> 59440669655040 -> 0, so a(39) = 5.
%p A133501 powertrain:=proc(n) local a,i,n1,n2,t1,t2; n1:=abs(n); n2:=sign(n); t1:=convert(n1, base, 10); t2:=nops(t1); a:=1; for i from 0 to floor(t2/2)-1 do a := a*t1[t2-2*i]^t1[t2-2*i-1]; od: if t2 mod 2 = 1 then a:=a*t1[1]; fi; RETURN(n2*a); end;
%p A133501 # Compute trajectory of n under repeated application of the powertrain map of A133500. This will return -1 if the trajectory does not converge to a single number in 100 steps (so it could fail if the trajectory enters a nontrivial loop or takes longer than 100 steps to converge).
%p A133501 PTtrajectory := proc(n) local p,M,t1,t2,i; M:=100; p:=[n]; t1:=n; for i from 1 to M do t2:=powertrain(t1); if t2 = t1 then RETURN(n,i-1,p); fi; t1:=t2; p:=[op(p),t2]; od; RETURN(n,-1,p); end;
%Y A133501 For the powertrain map itself, see A133500.
%Y A133501 See A133508, A133503 for records. See A135381 for high-water marks.
%K A133501 nonn,base
%O A133501 0,25
%A A133501 _J. H. Conway_ and _N. J. A. Sloane_, Dec 03 2007