cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133514 Biquadrateful (i.e., not biquadrate-free) palindromes.

This page as a plain text file.
%I A133514 #19 Sep 27 2023 04:07:29
%S A133514 272,464,656,848,2112,2992,4224,6336,8448,14641,21312,21712,23232,
%T A133514 23632,25152,25552,25952,27072,27472,27872,29392,29792,31213,40304,
%U A133514 40704,42224,42624,44144,44544,44944,46064,46464,46864,48384,48784,61216,61616,62426,63136
%N A133514 Biquadrateful (i.e., not biquadrate-free) palindromes.
%C A133514 This is to A035133 as 4th powers are to cubes. To make an analogy between analogies, the preceding sentence is to "A130873 is to 4th powers as A120398 is to cubes" as palindromes are to sums of two distinct prime powers.
%H A133514 Chai Wah Wu, <a href="/A133514/b133514.txt">Table of n, a(n) for n = 1..10000</a>
%F A133514 A002113 INTERSECTION A046101.
%e A133514 a(10) = 14641 = 11^4 (the smallest odd value in this sequence).
%e A133514 a(11) = 21312 = 2^6 * 3^2 * 37.
%p A133514 isA046101 := proc(n) local ifs,f ; ifs := ifactors(n)[2] ; for f in ifs do if op(2,f) >= 4 then RETURN(true) ; fi ; od: RETURN(false) ; end: isA002113 := proc(n) local digs,i ; digs := convert(n,base,10) ; for i from 1 to nops(digs) do if op(i,digs) <> op(-i,digs) then RETURN(false) ; fi ; od: RETURN(true) ; end: isA133514 := proc(n) isA046101(n) and isA002113(n) ; end: for n from 1 to 100000 do if isA133514(n) then printf("%d, ",n) ; fi ; od: # _R. J. Mathar_, Jan 12 2008
%p A133514 # second Maple program:
%p A133514 q:= n->StringTools[IsPalindrome](""||n) and max(map(i->i[2], ifactors(n)[2]))>3:
%p A133514 select(q, [$1..70000])[];  # _Alois P. Heinz_, Sep 27 2023
%t A133514 a = {}; For[n = 2, n < 100000, n++, If[FromDigits[Reverse[IntegerDigits[n]]] == n, b = 0; For[l = 1, l < Length[FactorInteger[n]] + 1, l++, If[FactorInteger[n][[l,2]] > 3, b = 1]]; If[b == 1, AppendTo[a, n]]]]; a (* _Stefan Steinerberger_, Dec 26 2007 *)
%t A133514 Select[Range@100000,PalindromeQ@#&&3<Max@Last@Transpose@FactorInteger@#&] (* _Hans Rudolf Widmer_, Sep 27 2023 *)
%Y A133514 Cf. A002113, A046101.
%K A133514 base,nonn
%O A133514 1,1
%A A133514 _Jonathan Vos Post_, Nov 30 2007
%E A133514 More terms from _Stefan Steinerberger_, Dec 26 2007
%E A133514 More terms from _R. J. Mathar_, Jan 12 2008