cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133523 Number of length n binary sequences with at most 2 of every adjacent 6 bits set.

This page as a plain text file.
%I A133523 #13 Feb 22 2018 05:58:13
%S A133523 1,2,4,7,11,16,22,34,54,86,136,212,324,498,772,1202,1873,2915,4524,
%T A133523 7012,10873,16877,26213,40716,63227,98154,152353,236493,367150,570034,
%U A133523 885032,1374048,2133185,3311680,5141292,7981842,12391897,19238551,29867908
%N A133523 Number of length n binary sequences with at most 2 of every adjacent 6 bits set.
%H A133523 R. H. Hardin, <a href="/A133523/b133523.txt">Table of n, a(n) for n = 0..215</a>
%F A133523 Empirical: a(n) = a(n-1) + a(n-3) + 2*a(n-6) - 2*a(n-9) - a(n-10) - a(n-12) + a(n-15). - _R. H. Hardin_, Apr 29 2012.
%F A133523 Empirical g.f.: (1 + x + 2*x^2 + 2*x^3 + 2*x^4 + x^5 - 3*x^6 - 3*x^7 - 4*x^8 - 2*x^9 - x^10 + x^12 + x^13 + x^14) / ((1 - x)*(1 + x + x^2)*(1 - x - x^4 - 2*x^6 - x^7 + x^12)). - _Colin Barker_, Feb 22 2018
%K A133523 nonn
%O A133523 0,2
%A A133523 _R. H. Hardin_, Dec 24 2007