cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133555 Order of A113709(n) among composite positive integers.

Original entry on oeis.org

1, 2, 3, 6, 9, 10, 11, 14, 19, 24, 27, 28, 29, 32, 37, 42, 47, 48, 51, 56, 57, 60, 71, 74, 75, 76, 79, 82, 95, 96, 99, 104, 105, 114, 119, 124, 125, 128, 133, 138, 147, 148, 151, 152, 157, 168, 175, 178, 181, 182, 187, 196, 197, 202, 207, 212, 217, 220, 221, 228, 231
Offset: 2

Views

Author

Leroy Quet, Dec 25 2007

Keywords

Examples

			The 10th prime - the 9th prime = 29-23 = 6. The integer between 23 and 29 that is divisible by 6 is 24. 24 is the 14th composite, so a(9) = 14.
		

Crossrefs

Programs

  • Maple
    A113709 := proc(n) local d,a ; d := ithprime(n+1)-ithprime(n) ; for a from ithprime(n)+1 do if a mod d = 0 then RETURN(a) ; fi ; od: end: A066246 := proc(n) local a,i; if n = 1 or isprime(n) then 0 ; else a := 0 ; for i from 4 to n do if not isprime(i) then a := a+1 ; fi ; od: RETURN(a) ; fi ; end: A133555 := proc(n) A066246(A113709(n)) ; end: seq(A133555(n),n=2..80) ; # R. J. Mathar, Jan 12 2008
  • Mathematica
    compositePi[n_] := n - PrimePi[n] - 1;
    a[n_] := Module[{p1 = Prime[n], p2 = Prime[n+1], c}, c = SelectFirst[ Range[p1+1, p2-1], Divisible[#, p2-p1]&]; compositePi[c]];
    Table[a[n], {n, 2, 62}] (* Jean-François Alcover, Apr 02 2024 *)

Formula

a(n) = A066246(A113709(n)). - R. J. Mathar, Jan 12 2008

Extensions

More terms from R. J. Mathar, Jan 12 2008