This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A133576 #15 Oct 27 2023 09:52:23 %S A133576 4,6,8,9,10,12,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31, %T A133576 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,48,49,50,51,52,53,54,55, %U A133576 56,57,58,59,60,62,63,64,65,66,67,68,69,70,71,72,74,75,76,77,78,79,80,81 %N A133576 Numbers which are sums of consecutive composites. %C A133576 This is to composites A002808 as A034707 is to primes A000040. The complement of this sequence, numbers which are not sums of consecutive composites, begins 1, 2, 3, 5, 7, ... (A140464). %e A133576 Every composite is in this sequence as one consecutive composite. We account for primes thus: %e A133576 a(10) = 17 = 8 + 9. %e A133576 a(12) = 19 = 9 + 10. %e A133576 a(16) = 23 = 6 + 8 + 9. %e A133576 a(22) = 29 = 14 + 15. %e A133576 a(24) = 31 = 9 + 10 + 12. %e A133576 a(30) = 37 = 4 + 6 + 8 + 9 + 10. %e A133576 a(34) = 41 = 20 + 21 = 12 + 14 + 15. %e A133576 a(36) = 43 = 21 + 22. %e A133576 Not included = 47. %e A133576 a(45) = 53 = 26 + 27 = 8 + 9 + 10 + 12 + 14. %e A133576 a(51) = 59 = 18 + 20 + 21 = 6 + 8 + 9 + 10 + 12 + 14. %e A133576 Not included = 61. %e A133576 a(58) = 67 = 33 + 34 = 21 + 22 + 24 = 10 + 12 + 14 + 15 + 16. %e A133576 a(62) = 71 = 35 + 36 = 22 + 24 + 25 = 4 + 6 + 8 + 9 + 10 + 12 + 14. %e A133576 Not included = 73. %e A133576 a(69) = 79 = 39 + 40. %e A133576 a(73) = 83 = 14 + 15 + 16 + 18 + 20. %e A133576 a(79) = 89 = 44 + 45. %e A133576 a(87) = 97 = 48 + 49 = 22 + 24 + 25 + 26. %e A133576 a(91) = 101 = 50 + 51. %e A133576 a(93) = 103 = 51 + 52. %p A133576 isA133576 := proc(n) %p A133576 local i,j ; %p A133576 for i from 1 do %p A133576 if A002808(i) > n then %p A133576 return false; %p A133576 end if; %p A133576 for j from i do %p A133576 s := add( A002808(l),l=i..j) ; %p A133576 if s > n then %p A133576 break; %p A133576 elif s = n then %p A133576 return true; %p A133576 end if; %p A133576 end do: %p A133576 end do: %p A133576 end proc: %p A133576 A133576 := proc(n) %p A133576 local a; %p A133576 if n = 1 then %p A133576 return A002808(1) ; %p A133576 else %p A133576 for a from procname(n-1)+1 do %p A133576 if isA133576(a) then %p A133576 return a; %p A133576 end if; %p A133576 end do: %p A133576 end if ; %p A133576 end proc: %p A133576 seq(A133576(n),n=1..71) ; # _R. J. Mathar_, Feb 14 2015 %t A133576 okQ[n_] := If[CompositeQ[n], True, MemberQ[IntegerPartitions[n, All, Select[Range[n], CompositeQ]], p_List /; Length[p] == Length[Union[p]] && AllTrue[Complement[Range[p[[-1]], p[[1]]], p], PrimeQ]]]; %t A133576 Select[Range[150], okQ] (* _Jean-François Alcover_, Oct 27 2023 *) %Y A133576 Cf. A002808, A034707, A037174, A140464 (complement). %K A133576 easy,nonn %O A133576 1,1 %A A133576 _Jonathan Vos Post_, Dec 26 2007