cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133588 Primes made from cubes with every digit decreased by 1 and no carrying.

This page as a plain text file.
%I A133588 #5 Mar 30 2012 18:40:44
%S A133588 7,53,401,617,2713,4721,127217,203321,667577,1188857,3630521,8320057,
%T A133588 11314657,12776761,14301073,24176441,37117433,50051873,56806201,
%U A133588 73176001,82465553,107075321,176802361,234461753,324138041,324408401
%N A133588 Primes made from cubes with every digit decreased by 1 and no carrying.
%C A133588 A000040 INTERSECTION {n-digit cube in A000578 - n-digit repdigit A002275(n) if that subtraction in base 10 is digit by digit with no carrying}. There are no other values less than 1000^3.
%C A133588 Created from table of cubes up to 500000^3: there may be missing terms! - _R. J. Mathar_, Jan 08 2008
%e A133588 In order of the size of the prime, not the initial cube, so that the sequence is strictly increasing:
%e A133588 2^3 - 1 = 7
%e A133588 4^3 - 11 = 53
%e A133588 8^3 - 111 = 401
%e A133588 12^3 - 1111 = 617
%e A133588 24^3 - 11111 = 2713
%e A133588 18^3 - 1111 = 4721
%e A133588 62^3 - 111111 = 127217
%e A133588 68^3 - 111111 = 203321
%e A133588 92^3 - 111111 = 667577
%e A133588 132^3 - 1111111 = 1188857
%e A133588 168^3 - 1111111 = 3630521
%e A133588 2232^3 - 11111111111 = 8320057
%e A133588 282^3 - 11111111 = 11314657
%e A133588 288^3 - 11111111 = 12776761
%e A133588 294^3 - 11111111 = 14301073
%e A133588 328^3 - 11111111 = 24176441
%e A133588 364^3 - 11111111 = 37117433
%e A133588 394^3 - 11111111 = 50051873
%e A133588 408^3 - 11111111 = 56806201
%e A133588 1058^3 - 1111111111 = 73176001
%e A133588 454^3 - 11111111 = 82465553
%Y A133588 Cf. A000040, A000578, A002275, A061844.
%K A133588 base,easy,nonn,less
%O A133588 1,1
%A A133588 _Jonathan Vos Post_, Dec 27 2007
%E A133588 Corrected and extended by _R. J. Mathar_, Jan 08 2008