This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A133604 #8 Sep 11 2023 17:53:12 %S A133604 2,4,8,21,66,97,204,565,662,775,970,1821,2780,6374,8730,8942,10898, %T A133604 24596,55307,67189,79047,84345,164868,231694,233570,234619,271511, %U A133604 298414,433973,474668,475800,567408,829129,839728,889285,1394240 %N A133604 Elements of A005282 that are also the sum of a pair of not necessarily distinct elements of A005282. %C A133604 A005282 is the sequence of smallest numbers such that the pairwise sums of not necessarily distinct elements are all distinct. %C A133604 Conjecture: 2, 4 and 8 are the only terms n such that n = 2*A005282(k) for some k. %H A133604 Klaus Brockhaus, <a href="/A133604/b133604.txt">Table of n, a(n) for n = 1..98</a> %e A133604 A005282(3) = 4 + 4 = 8 = A005282(4), hence 8 is in the sequence. %e A133604 A005282(10) = 81, A005282(12) = 123. 81 + 123 = 204 = A005282(15), hence 204 is in the sequence. %o A133604 (Python) %o A133604 from itertools import count, islice %o A133604 def A133604_gen(): # generator of terms %o A133604 aset2, alist = set(), [] %o A133604 for k in count(1): %o A133604 bset2 = {r:=k<<1} %o A133604 if r not in aset2: %o A133604 for d in alist: %o A133604 if (m:=d+k) in aset2: %o A133604 break %o A133604 bset2.add(m) %o A133604 else: %o A133604 if k in aset2: %o A133604 yield k %o A133604 alist.append(k) %o A133604 aset2.update(bset2) %o A133604 A133604_list = list(islice(A133604_gen(),30)) # _Chai Wah Wu_, Sep 11 2023 %Y A133604 Cf. A005282, A011185, A133605. %K A133604 nonn %O A133604 1,1 %A A133604 _Klaus Brockhaus_, Sep 18 2007