This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A133605 #9 Sep 12 2023 02:04:49 %S A133605 3,5,8,13,21,74,95,182,212,413,862,1060,1435,1934,4447,5323,7588, %T A133605 19934,23725,24970,29558,43344,45425,48622,55240,63835,91336,98178, %U A133605 177387,180356,206088,333837,400924,418503,429115,598604,776150,990510,993089 %N A133605 Elements of A011185 that are also the sum of a pair of distinct elements of A011185. %C A133605 A011185 is the sequence of smallest numbers such that the pairwise sums of distinct elements are all distinct. %H A133605 Klaus Brockhaus, <a href="/A133605/b133605.txt">Table of n, a(n) for n = 1..75</a> %e A133605 A011185(1) = 1, A011185(2) = 2. 1 + 2 = 3 = A011185(3), hence 3 is in the sequence. %e A133605 A011185(16) = 212, A011185(35) = 1722. 212 + 1722 = 1934 = A011185(37), hence 1934 is in the sequence. %o A133605 (Python) %o A133605 from itertools import count, islice %o A133605 def A133605_gen(): # generator of terms %o A133605 aset2, alist = set(), [] %o A133605 for k in count(1): %o A133605 bset2 = set() %o A133605 for a in alist: %o A133605 if (b:=a+k) in aset2: %o A133605 break %o A133605 bset2.add(b) %o A133605 else: %o A133605 if k in aset2: %o A133605 yield k %o A133605 alist.append(k) %o A133605 aset2.update(bset2) %o A133605 A133605_list = list(islice(A133605_gen(),30)) # _Chai Wah Wu_, Sep 11 2023 %Y A133605 Cf. A011185, A005282, A133604. %K A133605 nonn %O A133605 1,1 %A A133605 _Klaus Brockhaus_, Sep 18 2007