cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133612 Unique sequence of digits a(0), a(1), a(2), ... such that for all k >= 2, the number A(k) := Sum_{n = 0..k-1} a(n)*10^n satisfies 2^A(k) == A(k) (mod 10^k).

Original entry on oeis.org

6, 3, 7, 8, 4, 9, 2, 3, 4, 3, 5, 3, 5, 7, 0, 5, 1, 6, 8, 9, 0, 8, 3, 3, 3, 5, 8, 9, 5, 1, 0, 0, 6, 2, 7, 8, 6, 9, 6, 8, 2, 5, 5, 4, 1, 0, 7, 5, 4, 2, 6, 8, 2, 6, 1, 4, 8, 2, 8, 2, 1, 2, 1, 2, 1, 9, 0, 7, 2, 9, 8, 3, 5, 5, 8, 9, 8, 9, 7, 1, 0, 4, 9, 0, 5, 2, 2, 0, 9, 1, 7, 8, 8, 8, 6, 5, 2, 2, 4, 4, 8, 3, 7, 1, 0
Offset: 0

Views

Author

Daniel Geisler (daniel(AT)danielgeisler.com), Dec 18 2007

Keywords

Comments

10-adic expansion of the iterated exponential 2^^n (A014221) for sufficiently large n (where c^^n denotes a tower of c's of height n). E.g., for n > 9, 2^^n == 2948736 (mod 10^7).
Sequences A133612-A133619 and A144539-A144544 generalize the observation that 7^343 == 343 (mod 1000).

Examples

			63784923435357051689083335895100627869682554107542682614828212121907298... - _Robert G. Wilson v_, Feb 22 2014
2^36 = 68719476736 == 36 (mod 100), 2^736 == 736 (mod 1000), 2^8736 == 8736 (mod 10000), etc.
		

References

  • M. RipĂ , La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011. ISBN 978-88-6178-789-6
  • Ilan Vardi, "Computational Recreations in Mathematica," Addison-Wesley Publishing Co., Redwood City, CA, 1991, pages 226-229.

Crossrefs

Programs

  • Mathematica
    (* Import Mmca coding for "SuperPowerMod" and "LogStar" from text file and then *) $RecursionLimit = 2^14; f[n_] := SuperPowerMod[2, n + 1, 10^n]; Reverse@ IntegerDigits@ f@ 105 (* Robert G. Wilson v, Feb 22 2014 *)

Extensions

Edited by N. J. A. Sloane, Dec 22 2007 and Dec 22 2008
More terms from J. Luis A. Yebra, Dec 12 2008
a(68) onward from Robert G. Wilson v, Feb 22 2014