A133654 a(n) = 2*A000129(n) - 1.
1, 3, 9, 23, 57, 139, 337, 815, 1969, 4755, 11481, 27719, 66921, 161563, 390049, 941663, 2273377, 5488419, 13250217, 31988855, 77227929, 186444715, 450117361, 1086679439, 2623476241, 6333631923, 15290740089, 36915112103, 89120964297, 215157040699
Offset: 1
Examples
a(3) = 2*A000129(3) - 1 = 2*5 - 1. a(5) = 57 = 2*a(4) + a(3) + 2 = 2*23 + 9 + 2.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-1).
Crossrefs
Cf. A000129.
Programs
-
PARI
Vec(x*(1+x^2)/((x-1)*(x^2+2*x-1)) + O(x^50)) \\ Colin Barker, Mar 16 2016
Formula
a(n) = 2*A000129(n) - 1, where A000129 = the Pell sequence. a(1) = 1, a(2) = 3, then for n>2, a(n) = 2*a(n-1) + a(n-2) + 2.
G.f.: x*(1+x^2)/( (x-1)*(x^2+2*x-1) ). - R. J. Mathar, Nov 14 2007
a(n) = -1+(-(1-sqrt(2))^n+(1+sqrt(2))^n)/sqrt(2). - Colin Barker, Mar 16 2016
Extensions
More terms from Philippe Deléham, Oct 16 2007, corrected by R. J. Mathar, Mar 12 2013
Comments