cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133654 a(n) = 2*A000129(n) - 1.

Original entry on oeis.org

1, 3, 9, 23, 57, 139, 337, 815, 1969, 4755, 11481, 27719, 66921, 161563, 390049, 941663, 2273377, 5488419, 13250217, 31988855, 77227929, 186444715, 450117361, 1086679439, 2623476241, 6333631923, 15290740089, 36915112103, 89120964297, 215157040699
Offset: 1

Views

Author

Gary W. Adamson, Sep 19 2007

Keywords

Comments

a(n)/a(n-1) tends to (1 + sqrt(2)).
Define a triangle by T(n,1) = n*(n-1)+1 and T(n,n) = 1, n >= 1. Let interior terms be T(r,c) = T(r-1,c) + T(r-1,c-1) + T(r-2,c-1). The triangle is 1; 3,1; 7,5,1; 13,15,7,1; etc. The row sums are 1, 4, 13, 36, 93, ... and the differences (sum of terms in row(n) minus those in row(n-1)) are a(n). - J. M. Bergot, Mar 10 2013

Examples

			a(3) = 2*A000129(3) - 1 = 2*5 - 1.
a(5) = 57 = 2*a(4) + a(3) + 2 = 2*23 + 9 + 2.
		

Crossrefs

Cf. A000129.

Programs

  • PARI
    Vec(x*(1+x^2)/((x-1)*(x^2+2*x-1)) + O(x^50)) \\ Colin Barker, Mar 16 2016

Formula

a(n) = 2*A000129(n) - 1, where A000129 = the Pell sequence. a(1) = 1, a(2) = 3, then for n>2, a(n) = 2*a(n-1) + a(n-2) + 2.
G.f.: x*(1+x^2)/( (x-1)*(x^2+2*x-1) ). - R. J. Mathar, Nov 14 2007
a(n) = -1+(-(1-sqrt(2))^n+(1+sqrt(2))^n)/sqrt(2). - Colin Barker, Mar 16 2016

Extensions

More terms from Philippe Deléham, Oct 16 2007, corrected by R. J. Mathar, Mar 12 2013