cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133709 Triangle read by rows: T(m,l) = number of labeled covers of size l of a finite set of m unlabeled elements (m >= 1, 1 <= l <= 2^m - 1).

Original entry on oeis.org

1, 1, 3, 3, 1, 7, 35, 140, 420, 840, 840, 1, 12, 131, 1435, 15225, 150570, 1351770, 10810800, 75675600, 454053600, 2270268000, 9081072000, 27243216000, 54486432000, 54486432000, 1, 18, 347, 7693, 185031, 4568046, 111793710, 2661422400
Offset: 1

Views

Author

N. J. A. Sloane, Dec 30 2007

Keywords

Examples

			Triangle begins:
1
1 3 3
1 7 35 140 420 840 840
1 12 131 1435 15225 150570 1351770
		

Crossrefs

Columns are given by A055998, A133710, A133711, A133712.

Programs

  • Maple
    A133709 := proc(m,l)
            option remember;
            if l = 1 then
                    1;
            else
                    add((-1)^i*binomial(l,i)*binomial(2^(l-i)+m-2,m),i=0..l-1)
                    - add(combinat[stirling2](l,i)*procname(m,i),i=1..l-1) ;
            end if;
    end proc:
    seq(seq(A133709(m,l),l=1..2^m-1),m=1..5) ; # R. J. Mathar, Nov 23 2011
  • Mathematica
    T[m_, l_] := T[m, l] = If[l == 1, 1, Sum[(-1)^i Binomial[l, i] Binomial[ 2^(l-i)+m-2, m], {i, 0, l-1}] - Sum[StirlingS2[l, i] T[m, i], {i, 1, l-1} ] ];
    Table[T[m, l], {m, 1, 5}, {l, 1, 2^m-1}] // Flatten (* Jean-François Alcover, Apr 01 2020, from Maple *)

Formula

Burger and van Vuuren give an explicit formula.