cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A133713 Array read by antidiagonals, giving the sizes pi_l(c_l(m,n)) of minimal covers (see reference for precise definition).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 7, 1, 1, 10, 25, 13, 1, 1, 15, 65, 81, 22, 1, 1, 21, 140, 325, 226, 34, 1, 1, 28, 266, 995, 1371, 561, 50, 1, 1, 36, 462, 2541, 5901, 5087, 1277, 70, 1, 1, 45, 750, 5698, 20097, 30569, 17080, 2706, 95, 1
Offset: 2

Views

Author

N. J. A. Sloane, Dec 30 2007

Keywords

Examples

			Array begins:
1 1 1 1 1 1 1 1 1 ...
1 3 7 13 22 34 50 ...
1 6 25 81 226 561 1277 ...
1 10 65 325 1371 5087 17080 ...
1 15 140 995 5901 30569 142375 ...
...
		

Crossrefs

Rows give A002623, A133714-A133717.
Columns give A000217, A001296, A133718-A133710.

Programs

  • Maple
    A133713 := proc(l,cl)
            g := 1 ;
            for k from 1 to cl+1 do
              add( binomial(binomial(l,k+1)+i-1,i)*t^(i*k),i=0..ceil(cl/k)) ;
              g := g*% ;
            end do:
            g := expand(g) ;
            coeftayl(g,t=0,cl) ;
    end proc:
    seq(seq(A133713(d-k, k), k=0..d-2), d=2..11); # R. J. Mathar, Nov 23 2011
  • Mathematica
    A133713[l_, cl_] := Module[{g, k, s}, g = 1; For[k = 1, k <= cl+1, k++, s = Sum[Binomial[Binomial[l, k+1]+i-1, i]*t^(i*k), {i, 0, Ceiling[cl/k]}]; g = g*s]; g = Expand[g]; SeriesCoefficient[g, {t, 0, cl}]]; A133713[A133713%5Bl-cl+2,%20cl%5D,%20%7Bl,%200,%209%7D,%20%7Bcl,%200,%20l%7D%5D%20//%20Flatten%20(*%20_Jean-Fran%C3%A7ois%20Alcover">, 0] = 1; Table[A133713[l-cl+2, cl], {l, 0, 9}, {cl, 0, l}] // Flatten (* _Jean-François Alcover, Jan 07 2014, translated from Maple *)

Formula

Burger and van Vuuren give a generating function.

Extensions

Missing term 2706 inserted by Jean-François Alcover, Jan 07 2014

A133709 Triangle read by rows: T(m,l) = number of labeled covers of size l of a finite set of m unlabeled elements (m >= 1, 1 <= l <= 2^m - 1).

Original entry on oeis.org

1, 1, 3, 3, 1, 7, 35, 140, 420, 840, 840, 1, 12, 131, 1435, 15225, 150570, 1351770, 10810800, 75675600, 454053600, 2270268000, 9081072000, 27243216000, 54486432000, 54486432000, 1, 18, 347, 7693, 185031, 4568046, 111793710, 2661422400
Offset: 1

Views

Author

N. J. A. Sloane, Dec 30 2007

Keywords

Examples

			Triangle begins:
1
1 3 3
1 7 35 140 420 840 840
1 12 131 1435 15225 150570 1351770
		

Crossrefs

Columns are given by A055998, A133710, A133711, A133712.

Programs

  • Maple
    A133709 := proc(m,l)
            option remember;
            if l = 1 then
                    1;
            else
                    add((-1)^i*binomial(l,i)*binomial(2^(l-i)+m-2,m),i=0..l-1)
                    - add(combinat[stirling2](l,i)*procname(m,i),i=1..l-1) ;
            end if;
    end proc:
    seq(seq(A133709(m,l),l=1..2^m-1),m=1..5) ; # R. J. Mathar, Nov 23 2011
  • Mathematica
    T[m_, l_] := T[m, l] = If[l == 1, 1, Sum[(-1)^i Binomial[l, i] Binomial[ 2^(l-i)+m-2, m], {i, 0, l-1}] - Sum[StirlingS2[l, i] T[m, i], {i, 1, l-1} ] ];
    Table[T[m, l], {m, 1, 5}, {l, 1, 2^m-1}] // Flatten (* Jean-François Alcover, Apr 01 2020, from Maple *)

Formula

Burger and van Vuuren give an explicit formula.
Showing 1-2 of 2 results.