cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A133722 Column 3 of triangle in A133721.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 7, 3, 1, 25, 6, 1, 65, 10, 1, 140, 15, 1, 266, 21, 1, 462, 28, 1, 750, 36, 1, 1155, 45, 1, 1705, 55, 1, 2431, 66, 1, 3367, 78, 1, 4550, 91, 1, 6020, 105, 1, 7820, 120, 1, 9996, 136, 1, 12597, 153, 1, 15675
Offset: 1

Views

Author

N. J. A. Sloane, Dec 30 2007

Keywords

Programs

  • Maple
    A133722 := proc(n)
            A133721(n,3) ;
    end proc:
    seq(A133722(n),n=1..60) ; # R. J. Mathar, Nov 23 2011
  • Mathematica
    A133713[l_, cl_] := Module[{g, k, s}, g = 1; For[k = 1, k <= cl + 1, k++, s = Sum[Binomial[Binomial[l, k + 1] + i - 1, i]*t^(i*k), {i, 0, Ceiling[ cl/k]}]; g = g*s]; SeriesCoefficient[g, {t, 0, cl}]];
    a[m_, n_] := A133713[Ceiling[m/n], n*Ceiling[m/n] - m];
    Table[a[m, 3], {m, 1, 55}] (* Jean-François Alcover, Apr 03 2020, after R. J. Mathar *)

Formula

Conjectures from Colin Barker, Apr 03 2020: (Start)
G.f.: x^3*(1 + x + x^2 - 4*x^3 + 2*x^4 - 2*x^5 + 6*x^6 + x^8 - 4*x^9 + x^12) / ((1 - x)^5*(1 + x + x^2)^5).
a(n) = 5*a(n-3) - 10*a(n-6) + 10*a(n-9) - 5*a(n-12) + a(n-15) for n>14.
(End)

A133723 Column 4 of triangle in A133721.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 1, 13, 7, 3, 1, 81, 25, 6, 1, 325, 65, 10, 1, 995, 140, 15, 1, 2541, 266, 21, 1, 5698, 462, 28, 1, 11586, 750, 36, 1, 21825, 1155, 45, 1, 38665, 1705, 55, 1, 65131, 2431, 66, 1, 105183, 3367, 78, 1, 163891, 4550, 91, 1
Offset: 1

Views

Author

N. J. A. Sloane, Dec 30 2007

Keywords

Programs

  • Maple
    A133723 := proc(n)
            A133721(n,4) ;
    end proc:
    seq(A133723(n),n=1..60) ; # R. J. Mathar, Nov 23 2011
  • Mathematica
    A133713[l_, cl_] := Module[{g, k, s}, g = 1; For[k = 1, k <= cl + 1, k++, s = Sum[Binomial[Binomial[l, k + 1] + i - 1, i]*t^(i*k), {i, 0, Ceiling[ cl/k]}]; g = g*s]; SeriesCoefficient[g, {t, 0, cl}]];
    a[m_, n_] := A133713[Ceiling[m/n], n*Ceiling[m/n] - m];
    Table[a[m, 4], {m, 1, 60}] (* Jean-François Alcover, Apr 03 2020, after R. J. Mathar *)

A133724 Column 5 of triangle in A133721.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 22, 13, 7, 3, 1, 226, 81, 25, 6, 1, 1371, 325, 65, 10, 1, 5901, 995, 140, 15, 1, 20097, 2541, 266, 21, 1, 57813, 5698, 462, 28, 1, 146427, 11586, 750, 36, 1, 335742, 21825, 1155, 45, 1, 710677, 38665, 1705, 55, 1
Offset: 1

Views

Author

N. J. A. Sloane, Dec 30 2007

Keywords

Programs

  • Maple
    A133724 := proc(n)
            A133721(n,5) ;
    end proc:
    seq(A133724(n),n=1..60) ; # R. J. Mathar, Nov 23 2011
  • Mathematica
    A133713[l_, cl_] := Module[{g, k, s}, g = 1; For[k = 1, k <= cl + 1, k++, s = Sum[Binomial[Binomial[l, k + 1] + i - 1, i]*t^(i*k), {i, 0, Ceiling[ cl/k]}]; g = g*s]; SeriesCoefficient[g, {t, 0, cl}]];
    a[m_, n_] := A133713[Ceiling[m/n], n*Ceiling[m/n] - m];
    Table[a[m, 5], {m, 1, 60}] (* Jean-François Alcover, Apr 03 2020, after R. J. Mathar *)

A133733 Column 6 of triangle in A133721.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 34, 22, 13, 7, 3, 1, 561, 226, 81, 25, 6, 1, 5087, 1371, 325, 65, 10, 1, 30569, 5901, 995, 140, 15, 1, 138103, 20097, 2541, 266, 21, 1, 507360, 57813, 5698, 462, 28, 1, 1594272, 146427, 11586, 750, 36, 1, 4433484, 335742, 21825, 1155, 45, 1
Offset: 1

Views

Author

N. J. A. Sloane, Dec 30 2007

Keywords

Programs

  • Mathematica
    A133713[l_, cl_] := Module[{g, k, s}, g = 1; For[k = 1, k <= cl + 1, k++, s = Sum[Binomial[Binomial[l, k + 1] + i - 1, i]*t^(i*k), {i, 0, Ceiling[ cl/k]}]; g = g*s]; SeriesCoefficient[g, {t, 0, cl}]];
    a[m_, n_] := A133713[Ceiling[m/n], n*Ceiling[m/n] - m];
    Table[a[m, 6], {m, 1, 60}] (* Jean-François Alcover, Apr 03 2020, after R. J. Mathar *)

Extensions

More terms from Jean-François Alcover, Apr 03 2020
Showing 1-4 of 4 results.