A133722 Column 3 of triangle in A133721.
0, 0, 1, 1, 1, 1, 7, 3, 1, 25, 6, 1, 65, 10, 1, 140, 15, 1, 266, 21, 1, 462, 28, 1, 750, 36, 1, 1155, 45, 1, 1705, 55, 1, 2431, 66, 1, 3367, 78, 1, 4550, 91, 1, 6020, 105, 1, 7820, 120, 1, 9996, 136, 1, 12597, 153, 1, 15675
Offset: 1
Keywords
Programs
-
Maple
A133722 := proc(n) A133721(n,3) ; end proc: seq(A133722(n),n=1..60) ; # R. J. Mathar, Nov 23 2011
-
Mathematica
A133713[l_, cl_] := Module[{g, k, s}, g = 1; For[k = 1, k <= cl + 1, k++, s = Sum[Binomial[Binomial[l, k + 1] + i - 1, i]*t^(i*k), {i, 0, Ceiling[ cl/k]}]; g = g*s]; SeriesCoefficient[g, {t, 0, cl}]]; a[m_, n_] := A133713[Ceiling[m/n], n*Ceiling[m/n] - m]; Table[a[m, 3], {m, 1, 55}] (* Jean-François Alcover, Apr 03 2020, after R. J. Mathar *)
Formula
Conjectures from Colin Barker, Apr 03 2020: (Start)
G.f.: x^3*(1 + x + x^2 - 4*x^3 + 2*x^4 - 2*x^5 + 6*x^6 + x^8 - 4*x^9 + x^12) / ((1 - x)^5*(1 + x + x^2)^5).
a(n) = 5*a(n-3) - 10*a(n-6) + 10*a(n-9) - 5*a(n-12) + a(n-15) for n>14.
(End)