cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133738 Expansion of product of 3rd order mock theta function phi(q) and Ramanujan theta function f(-q) in powers of q.

This page as a plain text file.
%I A133738 #13 Feb 16 2025 08:33:06
%S A133738 1,0,-2,-2,2,2,-2,0,2,4,-2,-4,2,0,-2,-2,2,4,-4,-4,2,2,-2,0,4,4,0,-6,2,
%T A133738 0,-2,0,2,6,-4,-4,4,0,-4,-2,0,4,-2,-4,2,0,0,0,4,4,-2,-6,2,0,-6,2,2,8,
%U A133738 0,-4,2,0,0,0,2,2,-6,-4,2,0,-2,0,4,4,0,-6,2,-2
%N A133738 Expansion of product of 3rd order mock theta function phi(q) and Ramanujan theta function f(-q) in powers of q.
%C A133738 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%H A133738 G. C. Greubel, <a href="/A133738/b133738.txt">Table of n, a(n) for n = 0..1000</a>
%H A133738 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H A133738 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F A133738 G.f.: Sum_{k in Z} (-1)^k * x^(k*(3*k + 1)/2) * (1 + x^k) / (1 + x^(2*k)).
%F A133738 G.f.: ( Product_{k>0} 1 - x^k ) * ( 1 + Sum_{k>0} x^k^2 / ((1 + x^2) * (1 + x^4) * ... * (1 + x^(2*k))) ).
%F A133738 Convolution of A053250 and A010815.
%e A133738 G.f. = 1 - 2*x^2 - 2*x^3 + 2*x^4 + 2*x^5 - 2*x^6 + 2*x^8 + 4*x^9 - 2*x^10 + ...
%t A133738 a[ n_] := If[ n < 0, 0, With[ {m = Quotient[ Sqrt[24 n + 1] - 1, 6]}, SeriesCoefficient[ Sum[ (-1)^k x^(k (3 k + 1)/2) (1 + x^k) / (1 + x^(2 k)), {k, -m, m}], {x, 0, n}]]]; (* _Michael Somos_, Jul 26 2015 *)
%o A133738 (PARI) {a(n) = if( n<0, 0, polcoeff( 1 + 2 * sum(k=1, (sqrtint(24*n + 1) - 1) \ 6, (-1)^k * x^(k*(3*k + 1)/2) * (1 + x^k) / (1 + x^(2*k)), x * O(x^n)), n))};
%o A133738 (PARI) {a(n) = my(t); if( n<0, 0, t = 1 + O(x^n); polcoeff( sum(k=1, sqrtint(n), t *= x^(2*k - 1) / (1 + x^(2*k)) + x * O(x^(n - (k-1)^2)), 1) * eta(x + x * O(x^n)), n))};
%Y A133738 Cf. A010815, A053250.
%K A133738 sign
%O A133738 0,3
%A A133738 _Michael Somos_, Sep 22 2007