This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A133740 #4 Feb 16 2025 08:33:06 %S A133740 19,179,419,499,643,673,769,883,1153,1409,1459,1889,2003,2083,2131, %T A133740 2579,2609,2659,2689,2819,3169,3779,3889,3907,4099,4129,4259,4339, %U A133740 4513,4723,4993,5009,5059,5233,5347,5443,5683,6529,6659,6689,6899,7219,7283,7459 %N A133740 Primes which are the sum of four positive 4th powers. %C A133740 Every positive integer is expressible as a sum of (at most) g(4) = 19 biquadratic numbers (Waring's problem). Davenport (1939) showed that G(4) = 16, meaning that all sufficiently large integers require only 16 biquadratic numbers. %H A133740 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BiquadraticNumber.html">Biquadratic Number.</a> %F A133740 {primes} INTERSECTION {a^4 + b^4 + c^4 + d^4} = A000040 INTERSECTION {A000583(a) + A000583(b) + A000583(c) + A000583(d) + for a,b,c,d > 0} %e A133740 a(1) = 19 = 2^4 + 1^4 + 1^4 + 1^4 = 16 + 1 + 1 + 1. %e A133740 a(2) = 179 = 3^4 + 3^4 + 2^4 + 1^4 = 81 + 81 + 16 + 1. %e A133740 a(3) = 4^4 + 3^4 + 3^4 + 1^4 = 256 + 81 + 81 + 1. %t A133740 Select[Union[ Flatten[Table[ a^4 + b^4 + c^4 + d^4, {a, 1, 10}, {b, 1, a}, {c, 1, b}, {d, 1, c}]]], PrimeQ] %Y A133740 Cf. A000040, A000583, A003337, A085318. %K A133740 easy,nonn %O A133740 1,1 %A A133740 _Jonathan Vos Post_, Dec 31 2007