This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A133743 #15 Feb 16 2025 08:33:06 %S A133743 1,4,9,16,25,36,49,100,144,169,225,256,361,441,484,625,729,784,1156, %T A133743 1521,1600,1764,2401,2704,3364,4096,4225,4356,4900,5184,5929,6889, %U A133743 7921,8836,9216,9409,10404,11881,13689,13924,14161,18496,19321,20449,21316 %N A133743 a(n) is the smallest positive square such that pairwise sums of distinct elements are all distinct. %H A133743 Klaus Brockhaus, <a href="/A133743/b133743.txt">Table of n, a(n) for n = 1..4948</a> %H A133743 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/B2-Sequence.html">B2-Sequence</a> %H A133743 <a href="/index/Br#B_2">Index entries for B_2 sequences</a> %e A133743 49 is in the sequence since the pairwise sums of distinct elements of {1, 4, 9, 16, 25, 36, 49} are all distinct: 5, 10, 13, 17, 20, 25, 26, 29, 34, 37, 40, 41, 45, 50, 52, 53, 58, 61, 65, 74, 85. %e A133743 64 is not in the sequence since 1 + 64 = 16 + 49. %o A133743 (Python) %o A133743 from itertools import count, islice %o A133743 def A133743_gen(): # generator of terms %o A133743 aset2, alist = set(), [] %o A133743 for k in map(lambda x:x**2, count(1)): %o A133743 bset2 = set() %o A133743 for a in alist: %o A133743 if (b:=a+k) in aset2: %o A133743 break %o A133743 bset2.add(b) %o A133743 else: %o A133743 yield k %o A133743 alist.append(k) %o A133743 aset2.update(bset2) %o A133743 A133743_list = list(islice(A133743_gen(),30)) # _Chai Wah Wu_, Sep 11 2023 %Y A133743 Cf. A000290, A062295, A133744, A133745. %K A133743 nonn %O A133743 1,2 %A A133743 _Klaus Brockhaus_, Sep 24 2007