This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A133750 #7 Feb 16 2025 08:33:06 %S A133750 5,659,709,739,929,1283,1409,1493,1523,1877,1907,2099,2179,2339,2689, %T A133750 2803,3109,3187,3299,3539,3733,3923,4339,4357,5009,5059,5443,5683, %U A133750 5939,5987,6053,6133,6529,7219,7349,7459,7699,7829,8419,8609,8819,8849,9043,9539 %N A133750 Primes which are the sum of five positive 4th powers. %C A133750 Every positive integer is expressible as a sum of (at most) g(4) = 19 biquadratic numbers (Waring's problem). Davenport (1939) showed that G(4) = 16, meaning that all sufficiently large integers require only 16 biquadratic numbers. %H A133750 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BiquadraticNumber.html">Biquadratic Number.</a> %F A133750 {primes} INTERSECTION {a^4 + b^4 + c^4 + d^4 + e^4} = A000040 INTERSECTION {A000583(a) + A000583(b) + A000583(c) + A000583(d) + A000583(e) for a,b,c,d,e > 0} %e A133750 a(1) = 5 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 = 1 + 1 + 1 + 1 + 1. %e A133750 a(2) = 659 = 5^4 + 2^4 + 2^4 + 1^4 + 1^4 = 625 + 16 + 16 + 1 + 1. %e A133750 a(3) = 709 = 5^4 + 3^4 + 1^4 + 1^4 + 1^4 = 625 + 81 + 1 + 1 + 1. %t A133750 t = Range[9]^4; Select[Union[Plus @@@ Tuples[t, 5]], # < 10^4 && PrimeQ[#] &] (* _Giovanni Resta_, Jun 20 2016 *) %Y A133750 Cf. A000040, A000583, A003337, A085318. %K A133750 easy,nonn %O A133750 1,1 %A A133750 _Jonathan Vos Post_, Dec 31 2007 %E A133750 Data corrected by _Giovanni Resta_, Jun 20 2016