cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133750 Primes which are the sum of five positive 4th powers.

This page as a plain text file.
%I A133750 #7 Feb 16 2025 08:33:06
%S A133750 5,659,709,739,929,1283,1409,1493,1523,1877,1907,2099,2179,2339,2689,
%T A133750 2803,3109,3187,3299,3539,3733,3923,4339,4357,5009,5059,5443,5683,
%U A133750 5939,5987,6053,6133,6529,7219,7349,7459,7699,7829,8419,8609,8819,8849,9043,9539
%N A133750 Primes which are the sum of five positive 4th powers.
%C A133750 Every positive integer is expressible as a sum of (at most) g(4) = 19 biquadratic numbers (Waring's problem). Davenport (1939) showed that G(4) = 16, meaning that all sufficiently large integers require only 16 biquadratic numbers.
%H A133750 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BiquadraticNumber.html">Biquadratic Number.</a>
%F A133750 {primes} INTERSECTION {a^4 + b^4 + c^4 + d^4 + e^4} = A000040 INTERSECTION {A000583(a) + A000583(b) + A000583(c) + A000583(d) + A000583(e) for a,b,c,d,e > 0}
%e A133750 a(1) = 5 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 = 1 + 1 + 1 + 1 + 1.
%e A133750 a(2) = 659 = 5^4 + 2^4 + 2^4 + 1^4 + 1^4 = 625 + 16 + 16 + 1 + 1.
%e A133750 a(3) = 709 = 5^4 + 3^4 + 1^4 + 1^4 + 1^4 = 625 + 81 + 1 + 1 + 1.
%t A133750 t = Range[9]^4; Select[Union[Plus @@@ Tuples[t, 5]], # < 10^4 && PrimeQ[#] &] (* _Giovanni Resta_, Jun 20 2016 *)
%Y A133750 Cf. A000040, A000583, A003337, A085318.
%K A133750 easy,nonn
%O A133750 1,1
%A A133750 _Jonathan Vos Post_, Dec 31 2007
%E A133750 Data corrected by _Giovanni Resta_, Jun 20 2016