This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A133757 #15 Feb 16 2025 08:33:06 %S A133757 0,1,2,4,11,7,20,23,27,28,61,61,153,130,151,157,301,343,561,806,1046, %T A133757 615,1227,2136,2472,2288,3685,2110,5241,4798,7017,10630,14175,14127, %U A133757 21267,15034,24677,29289,46814,29291,63872,58451,82839,143678,196033,99103,218108 %N A133757 Total number of restricted right truncatable primes in base n. %C A133757 Prime digits p in base n are counted if there is no prime with 2 digits which can have its rightmost digit removed to produce p. %H A133757 I. O. Angell and H. J. Godwin, <a href="http://dx.doi.org/10.1090/S0025-5718-1977-0427213-2">On Truncatable Primes</a>, Math. Comput. 31, 265-267, 1977. %H A133757 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TruncatablePrime.html">Truncatable Prime</a>. %H A133757 <a href="/index/Tri#tprime">Index entries for sequences related to truncatable primes</a> %o A133757 (Python) %o A133757 from sympy import isprime, primerange %o A133757 def fromdigits(digs, base): %o A133757 return sum(d*base**i for i, d in enumerate(digs)) %o A133757 def a(n): %o A133757 prime_lists, an = [(p, ) for p in primerange(1, n)], 0 %o A133757 digits = 1 %o A133757 while len(prime_lists) > 0: %o A133757 new_prime_strs = set() %o A133757 for p in prime_lists: %o A133757 can_extend = False %o A133757 for d in range(n): %o A133757 c = (d, ) + p %o A133757 if isprime(fromdigits(c, n)): %o A133757 can_extend = True %o A133757 new_prime_strs.add(c) %o A133757 if not can_extend: %o A133757 an += 1 %o A133757 prime_lists = list(new_prime_strs) %o A133757 digits += 1 %o A133757 return an %o A133757 print([a(n) for n in range(2, 27)]) # _Michael S. Branicky_, Dec 11 2022 %Y A133757 Cf. A076586. %K A133757 nonn %O A133757 2,3 %A A133757 _Martin Renner_, Jan 04 2008 %E A133757 a(6) corrected and a(11) and beyond from _Michael S. Branicky_, Dec 11 2022