This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A133773 #9 Sep 29 2018 18:45:57 %S A133773 1,1,3,5,3,3,7,5,5,5,9,5,5,7,5,5,5,11,9,9,7,5,7,7,9,7,7,7,13,7,7,9,7, %T A133773 7,7,11,9,9,7,5,7,7,9,7,7,7,15,13,13,11,9,11,11,11,9,9,7,5,9,9,11,9,9, %U A133773 9,13,11,11,9,7,9,9,11,9,9,9,17,9,9,11,9,9,9,13,11,11,9,7,9,9,11,9,9,9,15,13 %N A133773 Number of runs (of equal bits) in the maximal "phinary" (A130601) representation of n. %D A133773 Zeckendorf, E., Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41, 179-182, 1972. %H A133773 Casey Mongoven, <a href="/A133773/b133773.txt">Table of n, a(n) for n = 1..199</a> %H A133773 Ron Knott, <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/phigits.html">Using Powers of Phi to represent Integers</a>. %H A133773 Casey Mongoven, <a href="http://caseymongoven.com/catalogue/b522.htm">Music based on this sequence</a>. %e A133773 A130601(3)=1101 because phi^1 + phi^0 + phi^-2 = 3; 1101 has 3 runs: 11,0,1. So a(3)=3. %Y A133773 Cf. A133772, A130601. %K A133773 nonn %O A133773 1,3 %A A133773 _Casey Mongoven_, Sep 23 2007