This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A133824 #33 Feb 15 2022 14:00:48 %S A133824 1,1,16,1,1,16,81,16,1,1,16,81,256,81,16,1,1,16,81,256,625,256,81,16, %T A133824 1,1,16,81,256,625,1296,625,256,81,16,1,1,16,81,256,625,1296,2401, %U A133824 1296,625,256,81,16,1,1,16,81,256,625,1296,2401,4096,2401,1296,625,256,81,16 %N A133824 Triangle whose rows are sequences of increasing and decreasing fourth powers: 1; 1,16,1; 1,16,81,16,1; ... . %C A133824 Reading the triangle by rows produces the sequence 1,1,16,1,1,16,81,16,1,..., analogous to A004737. %C A133824 From - _Boris Putievskiy_, Jan 13 2013: (Start) %C A133824 The order of the list T(n,k) is by sides of squares from T(1,n) to T(n,n), then from T(n,n) to T(n,1). %C A133824 Row number k contains 2*k-1 numbers 1,16,...,(k-1)^4,k^4,(k-1)^4,...,16,1. (End) %H A133824 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations Integer Sequences And Pairing Functions</a>, arXiv:1212.2732 [math.CO], 2012. %F A133824 O.g.f.: (1+qx)(1+11qx+11q^2x^2+q^3x^3)/((1-x)(1-qx)^4(1-q^2x)) = 1 + x(1 + 16q + q^2) + x^2(1 + 16q + 81q^2 + 16q^3 + q^4) + ... . Cf. 4th row of A008292. %F A133824 From _Boris Putievskiy_, Jan 13 2013: (Start) %F A133824 T(n,k) = min(n,k)^4. %F A133824 a(n) = (A004737(n))^4. %F A133824 a(n) = (A124258(n))^2. %F A133824 a(n) = (floor(sqrt(n-1)) - |n- floor(sqrt(n-1))^2- floor(sqrt(n-1))-1| +1)^4. (End) %e A133824 Triangle starts: %e A133824 1; %e A133824 1, 16, 1; %e A133824 1, 16, 81, 16, 1; %e A133824 1, 16, 81, 256, 81, 16, 1; %e A133824 ... %e A133824 From _Boris Putievskiy_, Jan 13 2013: (Start) %e A133824 The start of the sequence as table: %e A133824 1...1...1...1...1.. .1... %e A133824 1..16..16..16..16...16... %e A133824 1..16..81..81..81...81... %e A133824 1..16..81.256.256..256... %e A133824 1..16..81.256.625..625... %e A133824 1..16..81.256.625.1296... %e A133824 ... %e A133824 (End) %t A133824 p4[n_]:=Module[{c=Range[n]^4},Join[c,Rest[Reverse[c]]]]; Flatten[p4/@ Range[10]] (* _Harvey P. Dale_, Dec 08 2014 *) %Y A133824 Cf. A004737, A061803 (row sums), A133821, A124258, A133823, A003983. %K A133824 easy,nonn,tabf %O A133824 0,3 %A A133824 _Peter Bala_, Sep 25 2007