This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A133853 #33 Apr 08 2022 22:38:22 %S A133853 0,1,65,4161,266305,17043521,1090785345,69810262081,4467856773185, %T A133853 285942833483841,18300341342965825,1171221845949812801, %U A133853 74958198140788019265,4797324681010433232961,307028779584667726909505,19649841893418734522208321,1257589881178799009421332545 %N A133853 a(n) = (64^n - 1)/63. %C A133853 Partial sums of powers of 64 (A089357), a.k.a. q-numbers for q=64. %H A133853 Vincenzo Librandi, <a href="/A133853/b133853.txt">Table of n, a(n) for n = 0..500</a> %H A133853 Quynh Nguyen, Jean Pedersen, and Hien T. Vu, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Pedersen/pedersen2.html">New Integer Sequences Arising From 3-Period Folding Numbers</a>, Vol. 19 (2016), Article 16.3.1. See Table 1. %H A133853 <a href="/index/Par#partial">Index entries related to partial sums</a> %H A133853 <a href="/index/Q#q-numbers">Index entries related to q-numbers</a> %H A133853 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (65,-64). %F A133853 From _Wolfdieter Lang_, Apr 08 2022: (Start) %F A133853 a(n) = Sum_{j=0..n-1} 2^(6*j). See the comment. %F A133853 G.f.: x/((1 - 64*x)*(1 - x)). %F A133853 E.g.f.: exp(x)*(exp(63*x) - 1)/63. (End) %t A133853 LinearRecurrence[{65,-64},{0,1},20] (* _Harvey P. Dale_, Aug 20 2017 *) %o A133853 (Magma) [(64^n-1)/63: n in [0..20]]; // _Vincenzo Librandi_, Aug 10 2011 %o A133853 (PARI) A133853(n)=64^n\63 %o A133853 (Maxima) makelist((64^n-1)/63, n, 0, 20); /* _Martin Ettl_, Nov 12 2012 */ %Y A133853 Cf. A000364. %Y A133853 Cf. similar sequences of the form (k^n-1)/(k-1) listed in A269025. %K A133853 nonn,easy %O A133853 0,3 %A A133853 _Paul Curtz_, Jan 07 2008 %E A133853 a(6)-a(15) from _Vincenzo Librandi_, Aug 10 2011