This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A133876 #9 Nov 15 2023 16:57:23 %S A133876 1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,0,0,0,0, %T A133876 0,0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,0,0, %U A133876 0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,0,0,0 %N A133876 n modulo 6 repeated 6 times. %C A133876 Periodic with length 6^2=36. %H A133876 <a href="/index/Rec#order_31">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, -1, 1). %F A133876 a(n)=(1+floor(n/6)) mod 6. %F A133876 a(n)=1+floor(n/6)-6*floor((n+6)/36). %F A133876 a(n)=(((n+6) mod 36)-(n mod 6))/6. %F A133876 a(n)=((n+6-(n mod 6))/6) mod 6. %F A133876 G.f. g(x)=(1-x^6)(1+2x^5+3x^12+4x^18+5x^24)/((1-x)(1-x^36)). %F A133876 G.f. g(x)=(5x^36-6x^30+1)/((1-x)(1-x^6)(1-x^36)). %t A133876 Table[PadRight[{},6,Mod[n,6]],{n,20}]//Flatten (* _Harvey P. Dale_, Nov 15 2023 *) %Y A133876 Cf. A000040, A133620-A133625, A133630, A038509, A133634-A133636. %Y A133876 Cf. A133886, A133880, A133890, A133900, A133910. %K A133876 nonn %O A133876 0,7 %A A133876 _Hieronymus Fischer_, Oct 10 2007