cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133876 n modulo 6 repeated 6 times.

This page as a plain text file.
%I A133876 #9 Nov 15 2023 16:57:23
%S A133876 1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,0,0,0,0,
%T A133876 0,0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,0,0,
%U A133876 0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,0,0,0
%N A133876 n modulo 6 repeated 6 times.
%C A133876 Periodic with length 6^2=36.
%H A133876 <a href="/index/Rec#order_31">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, -1, 1).
%F A133876 a(n)=(1+floor(n/6)) mod 6.
%F A133876 a(n)=1+floor(n/6)-6*floor((n+6)/36).
%F A133876 a(n)=(((n+6) mod 36)-(n mod 6))/6.
%F A133876 a(n)=((n+6-(n mod 6))/6) mod 6.
%F A133876 G.f. g(x)=(1-x^6)(1+2x^5+3x^12+4x^18+5x^24)/((1-x)(1-x^36)).
%F A133876 G.f. g(x)=(5x^36-6x^30+1)/((1-x)(1-x^6)(1-x^36)).
%t A133876 Table[PadRight[{},6,Mod[n,6]],{n,20}]//Flatten (* _Harvey P. Dale_, Nov 15 2023 *)
%Y A133876 Cf. A000040, A133620-A133625, A133630, A038509, A133634-A133636.
%Y A133876 Cf. A133886, A133880, A133890, A133900, A133910.
%K A133876 nonn
%O A133876 0,7
%A A133876 _Hieronymus Fischer_, Oct 10 2007