cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133877 n modulo 7 repeated 7 times.

This page as a plain text file.
%I A133877 #7 Apr 16 2023 22:13:39
%S A133877 1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,
%T A133877 5,6,6,6,6,6,6,6,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,
%U A133877 3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,0,0,0,0,0,0,0,1,1,1,1,1,1,1
%N A133877 n modulo 7 repeated 7 times.
%C A133877 Periodic with length 7^2=49.
%H A133877 <a href="/index/Rec#order_43">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, -1, 1).
%F A133877 a(n)=(1+floor(n/7)) mod 7.
%F A133877 a(n)=1+floor(n/7)-7*floor((n+7)/49).
%F A133877 a(n)=(((n+7) mod 49)-(n mod 7))/7.
%F A133877 a(n)=((n+7-(n mod 7))/7) mod 7.
%F A133877 a(n)=binomial(n+7,n) mod 7 =binomial(n+7,7) mod 7.
%F A133877 G.f. g(x)=(1-x^7)(1+2x^7+3x^14+4x^21+5x^28+6x^35)/((1-x)(1-x^49)).
%F A133877 G.f. g(x)=(6x^49-7x^42+1)/((1-x)(1-x^7)(1-x^49)).
%Y A133877 Cf. A000040, A133620-A133625, A133630, A038509, A133634-A133636.
%Y A133877 Cf. A133887, A133880, A133890, A133900, A133910.
%K A133877 nonn
%O A133877 0,8
%A A133877 _Hieronymus Fischer_, Oct 10 2007