This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A133878 #10 Apr 16 2023 22:13:49 %S A133878 1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5, %T A133878 5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,0,0,0,0,0,0,0,0,1,1,1,1, %U A133878 1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6 %N A133878 n modulo 8 repeated 8 times. %C A133878 Periodic with length 8^2=64. %H A133878 <a href="/index/Rec#order_57">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, -1, 1). %F A133878 a(n)=(1+floor(n/8)) mod 8. %F A133878 a(n)=1+floor(n/8)-8*floor((n+8)/64). %F A133878 a(n)=(((n+8) mod 64)-(n mod 8))/8. %F A133878 a(n)=((n+8-(n mod 8))/8) mod 8. %F A133878 G.f. g(x)=(1-x^8)(1+2x^8+3x^16+4x^24+5x^32+6x^40+7x^48)/((1-x)(1-x^64)). %F A133878 G.f. g(x)=(1-x^8)*sum{0<=k<7, (k+1)*x^(8*k)}/((1-x)(1-x^64)). %F A133878 G.f. g(x)=(7x^64-8x^56+1)/((1-x)(1-x^8)(1-x^64)). %t A133878 Flatten[Join[Table[PadRight[{},8,n],{n,7}],Table[PadRight[{},8,n],{n,0,7}]]] (* _Harvey P. Dale_, Nov 06 2011 *) %Y A133878 Cf. A000040, A133620-A133625, A133630, A038509, A133634-A133636. %Y A133878 Cf. A133888, A133880, A133890, A133900, A133910. %K A133878 nonn %O A133878 0,9 %A A133878 _Hieronymus Fischer_, Oct 10 2007