cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133882 a(n) = binomial(n+2,n) mod 2^2.

This page as a plain text file.
%I A133882 #25 Apr 24 2023 12:19:02
%S A133882 1,3,2,2,3,1,0,0,1,3,2,2,3,1,0,0,1,3,2,2,3,1,0,0,1,3,2,2,3,1,0,0,1,3,
%T A133882 2,2,3,1,0,0,1,3,2,2,3,1,0,0,1,3,2,2,3,1,0,0,1,3,2,2,3,1,0,0,1,3,2,2,
%U A133882 3,1,0,0,1,3,2,2,3,1,0,0,1,3,2,2,3,1,0,0,1,3,2,2,3,1,0,0,1,3,2,2,3,1,0,0,1
%N A133882 a(n) = binomial(n+2,n) mod 2^2.
%C A133882 Periodic with length 2^3 = 8.
%H A133882 Antti Karttunen, <a href="/A133882/b133882.txt">Table of n, a(n) for n = 0..8191</a>
%H A133882 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1, -1, 1, -1, 1, -1, 1).
%F A133882 a(n) = binomial(n+2,2) mod 2^2.
%F A133882 G.f.: (1 + 3*x + 2*x^2 + 2*x^3 + 3*x^4 + x^5)/(1-x^8).
%F A133882 G.f.: (1+x)*(1+2*x+2*x^3+x^4)/(1-x^8) = (1+2*x+2*x^3+x^4)/((1-x)*(1+x^2)*(1+x^4)).
%F A133882 a(n) = A105198(n+1). - _R. J. Mathar_, Jun 08 2008
%t A133882 Table[Mod[Binomial[n+2,n],4],{n,0,120}]  (* _Harvey P. Dale_, Apr 16 2011 *)
%o A133882 (PARI) A133882(n) = (binomial(n+2,n) % 4); \\ _Antti Karttunen_, Aug 10 2017
%Y A133882 Cf. A000040, A133620-A133625, A133630, A038509, A133634-A133636.
%Y A133882 Cf. A133872, A133880, A133890, A133900, A133910.
%Y A133882 For the sequence regarding "binomial(n+2, n) mod 2" see A133872.
%Y A133882 A105198 shifted once left.
%K A133882 nonn,easy
%O A133882 0,2
%A A133882 _Hieronymus Fischer_, Oct 10 2007