cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133883 a(n) = binomial(n+3,n) mod 3^2.

This page as a plain text file.
%I A133883 #21 Sep 08 2022 08:45:32
%S A133883 1,4,1,2,8,2,3,3,3,4,7,4,5,2,5,6,6,6,7,1,7,8,5,8,0,0,0,1,4,1,2,8,2,3,
%T A133883 3,3,4,7,4,5,2,5,6,6,6,7,1,7,8,5,8,0,0,0,1,4,1,2,8,2,3,3,3,4,7,4,5,2,
%U A133883 5,6,6,6,7,1,7,8,5,8,0,0,0,1,4,1,2,8,2,3,3,3,4,7,4,5,2,5,6,6,6,7,1,7,8,5,8
%N A133883 a(n) = binomial(n+3,n) mod 3^2.
%C A133883 Periodic with length 3^3 = 27.
%H A133883 Colin Barker, <a href="/A133883/b133883.txt">Table of n, a(n) for n = 0..1000</a>
%H A133883 <a href="/index/Rec#order_25">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1).
%F A133883 a(n) = binomial(n+3,3) mod 3^2.
%F A133883 G.f.: (1 +3*x -3*x^2 +2*x^3 +9*x^4 -9*x^5 +3*x^6 +9*x^7 -9*x^8 +4*x^9 +12*x^10 -12*x^11 +5*x^12 +9*x^13 -9*x^14 +6*x^15 +9*x^16 -9*x^17 +7*x^18 +3*x^19 -3*x^20 +8*x^21) / ((1 -x)*(1 +x^3 +x^6)*(1 +x^9 +x^18)). - _Colin Barker_, Jul 19 2016
%t A133883 Table[Mod[Binomial[n + 3, n], 9], {n, 0, 120}] (* or *)
%t A133883 CoefficientList[Series[(1 + 3 x - 3 x^2 + 2 x^3 + 9 x^4 - 9 x^5 + 3 x^6 + 9 x^7 - 9 x^8 + 4 x^9 + 12 x^10 - 12 x^11 + 5 x^12 + 9 x^13 - 9 x^14 + 6 x^15 + 9 x^16 - 9 x^17 + 7 x^18 + 3 x^19 - 3 x^20 + 8 x^21)/((1 - x) (1 + x^3 + x^6) (1 + x^9 + x^18)), {x, 0, 120}], x] (* _Michael De Vlieger_, Jul 19 2016 *)
%o A133883 (PARI) Vec((1 +3*x -3*x^2 +2*x^3 +9*x^4 -9*x^5 +3*x^6 +9*x^7 -9*x^8 +4*x^9 +12*x^10 -12*x^11 +5*x^12 +9*x^13 -9*x^14 +6*x^15 +9*x^16 -9*x^17 +7*x^18 +3*x^19 -3*x^20 +8*x^21) / ((1 -x)*(1 +x^3 +x^6)*(1 +x^9 +x^18)) + O(x^200)) \\ _Colin Barker_, Jul 19 2016
%o A133883 (Magma) [Binomial(n+3,n) mod 9: n in [0..60]]; // _Vincenzo Librandi_, Jul 20 2016
%Y A133883 Cf. A000040, A133620-A133625, A133630, A038509, A133634-A133636.
%Y A133883 Cf. A133873, A133880, A133890, A133900, A133910.
%Y A133883 For the sequence regarding "Binomial(n+3, n) mod 3" see A133873.
%K A133883 nonn,easy
%O A133883 0,2
%A A133883 _Hieronymus Fischer_, Oct 10 2007
%E A133883 Corrected g.f. by _Colin Barker_, Jul 19 2016