This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A133884 #33 Apr 16 2023 22:12:13 %S A133884 1,1,3,3,2,2,2,2,3,3,1,1,0,0,0,0,1,1,3,3,2,2,2,2,3,3,1,1,0,0,0,0,1,1, %T A133884 3,3,2,2,2,2,3,3,1,1,0,0,0,0,1,1,3,3,2,2,2,2,3,3,1,1,0,0,0,0,1,1,3,3, %U A133884 2,2,2,2,3,3,1,1,0,0,0,0,1,1,3,3,2,2,2,2,3,3,1,1,0,0,0,0,1,1,3,3,2,2,2,2,3 %N A133884 a(n) = binomial(n+4,n) mod 4. %C A133884 Periodic with length 4^2=16. %H A133884 <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1). %F A133884 a(n) = binomial(n+4,4) mod 4. %F A133884 G.f.: (1 + x + 3*x^2 + 3*x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 2*x^7 + 3*x^8 + 3*x^9 + x^10 + x^11)/(1 - x^16) = (1 + 2*x^2 + 2*x^6 + x^8)/((1 - x)*(1 + x^4)*(1 + x^8)). %F A133884 a(n) = A000505(n+5) mod 4. - _John M. Campbell_, Jul 14 2016 %F A133884 a(n) = A000506(n+6) mod 4. - _John M. Campbell_, Jul 15 2016 %e A133884 For n=2, binomial(6,2) = 6*5/2 = 15, which is 3 (mod 4) so a(2) = 3. - _Michael B. Porter_, Jul 19 2016 %t A133884 Table[Mod[Binomial[n + 4, 4], 4], {n, 0, 100}] (* _Vincenzo Librandi_, Jul 15 2016 *) %o A133884 (Magma) [Binomial(n+4,n) mod 4: n in [0..100]]; // _Vincenzo Librandi_, Jul 15 2016 %Y A133884 Cf. A000040, A133630, A038509. %Y A133884 Cf. A133620, A133621, A133622, A133623, A133624, A133625 %Y A133884 Cf. A133634, A133635, A133636. %Y A133884 Cf. A133874, A133880, A133890, A133900, A133910. %K A133884 nonn,easy %O A133884 0,3 %A A133884 _Hieronymus Fischer_, Oct 10 2007 %E A133884 G.f. corrected by _Bruno Berselli_, Jul 19 2016