cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133896 Numbers m such that binomial(m+6,m) mod 6 = 0.

This page as a plain text file.
%I A133896 #8 Nov 12 2017 09:33:39
%S A133896 3,4,5,6,7,12,13,14,15,21,22,23,26,30,31,34,35,39,42,43,44,50,51,52,
%T A133896 53,58,59,60,61,62,66,67,68,69,70,71,75,76,77,78,79,84,85,86,87,93,94,
%U A133896 95,98,102,103,106,107,111,114,115,116,122,123,124,125,130,131,132,133,134
%N A133896 Numbers m such that binomial(m+6,m) mod 6 = 0.
%C A133896 Partial sums of the sequence 3,1,1,1,1,5,1,1,1,6,1,1,3,4,1,3,1,4,3,1,1,6,1,1,1,5,1,1,1,1,4,1,1,1,1,1,4, ... which has period 36.
%F A133896 G.f.: g(x)=3/(1-x)+ x/(1-x)^2+(4x^5+5x^9+2x^12+3x^13+2x^15+3x^17+2x^18+5x^21+3x^26+3x^32) /((1-x^36)(1-x)).
%F A133896 G.f.: g(x)=(3-2x+4x^5+5x^9+2x^12+3x^13+2x^15+3x^17+2x^18+5x^21+3x^26+3x^32-x^37) /((1-x^36)(1-x)^2).
%t A133896 Select[Range[140], Mod[Binomial[# + 6, #], 6] == 0&] (* _Jean-François Alcover_, Nov 12 2017 *)
%o A133896 (PARI) isok(n) = !(binomial(n+6, n) % 6); \\ _Michel Marcus_, Nov 12 2017
%Y A133896 Cf. A000040, A133620, A133621, A133623, A133630, A133635.
%Y A133896 Cf. A133876, A133886, A133890, A133900, A133910.
%K A133896 nonn
%O A133896 0,1
%A A133896 _Hieronymus Fischer_, Oct 20 2007