cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133898 Numbers m such that binomial(m+8,m) mod 8 = 0.

This page as a plain text file.
%I A133898 #7 Apr 07 2025 17:17:33
%S A133898 56,57,58,59,60,61,62,63,120,121,122,123,124,125,126,127,184,185,186,
%T A133898 187,188,189,190,191,248,249,250,251,252,253,254,255,312,313,314,315,
%U A133898 316,317,318,319,376,377,378,379,380,381,382,383,440,441,442,443,444
%N A133898 Numbers m such that binomial(m+8,m) mod 8 = 0.
%C A133898 Partial sums of the sequence 56,1,1,1,1,1,1,1,57,1,1,1,1,1,1,1,57, ... which has period 8.
%H A133898 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,1,-1).
%F A133898 a(n)=8n+56-7*(n mod 8). [Corrected by _Charles R Greathouse IV_, Oct 13 2022]
%F A133898 G.f.: g(x)=(56+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8)/((1-x^8)(1-x)).
%F A133898 G.f.: g(x)=(56-55x-x^9) /((1-x^8)(1-x)^2).
%t A133898 Select[Range[500],Mod[Binomial[#+8,#],8]==0&] (* or *) LinearRecurrence[{1,0,0,0,0,0,0,1,-1},{56,57,58,59,60,61,62,63,120},60] (* _Harvey P. Dale_, Apr 07 2025 *)
%o A133898 (PARI) a(n)=8*n+56-n%8*7 \\ _Charles R Greathouse IV_, Oct 13 2022
%Y A133898 Cf. A000040, A133620, A133621, A133623, A133630, A133635.
%Y A133898 Cf. A133878, A133888, A133890, A133900, A133910.
%K A133898 nonn,easy
%O A133898 0,1
%A A133898 _Hieronymus Fischer_, Oct 20 2007