cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133922 a(n) is number of permutations (p(1),p(2),p(3),...,p(n)) of (1,2,3,...,n) such that p(k) is coprime to p(n+1-k) for k = all positive integers <= n.

This page as a plain text file.
%I A133922 #24 Jan 22 2022 08:47:10
%S A133922 1,2,2,16,16,192,192,6912,4608,230400,230400,11612160,11612160,
%T A133922 1199923200,588349440,98594979840,98594979840,11076328488960,
%U A133922 11076328488960,2102897147904000,1076597725593600,331238941183180800,331238941183180800,66325953940291584000,56326771107377971200
%N A133922 a(n) is number of permutations (p(1),p(2),p(3),...,p(n)) of (1,2,3,...,n) such that p(k) is coprime to p(n+1-k) for k = all positive integers <= n.
%C A133922 For n = odd integer the middle term of all counted permutations must be 1.
%C A133922 From _Robert Israel_, Sep 12 2016: (Start)
%C A133922 Consider the graph with vertices [1,...,n] if n is even, [2,...,n] if n is odd, and edges joining coprime integers.
%C A133922 a(n) is A037223(n) times the number of perfect matchings in this graph.
%C A133922 If n is even, a(n) = A037223(n)*A009679(n/2).
%C A133922 If n is an odd prime, a(n) = a(n-1). (End)
%H A133922 Robert Israel, <a href="/A133922/b133922.txt">Table of n, a(n) for n = 1..31</a>
%e A133922 For n = 6, the permutation (3,2,1,6,4,5) is not counted because p(2)=2 is not coprime to p(5)=4. However, the permutation (3,6,1,4,5,2) is counted because GCD(3,2) = GCD(6,5) = GCD(1,4) = 1.
%p A133922 M:= proc(A) option remember;
%p A133922     local n,t,i,Ai,Ap,inds,isrt,As;
%p A133922     n:= nops(A);
%p A133922     if n = 0 then return 1 fi;
%p A133922     t:= 0;
%p A133922     for i in A[1] do
%p A133922       inds:= [$2..i-1,$i+1..n];
%p A133922       Ai:= subs([1=NULL,i=NULL,seq(inds[i]=i,i=1..n-2)],A[inds]);
%p A133922       isrt:= sort([$1..n-2],(r,s) -> nops(Ai(r)) <= nops(Ai(s)),output=permutation);
%p A133922       Ai:= subs([seq(isrt[i]=i,i=1..n-2)],Ai[isrt]);
%p A133922       t:= t + procname(Ai);
%p A133922     od;
%p A133922     t;
%p A133922 end proc:
%p A133922 F:= proc(n) local A;
%p A133922   if n::odd then
%p A133922     if isprime(n) then return procname(n-1) fi;
%p A133922     A:= [seq(select(t -> igcd(t+1,i+1)=1, [$1..i-1,$i+1..n-1]),i=1..n-1)];
%p A133922   else
%p A133922     A:= [seq(select(t -> igcd(t,i)=1,[$1..i-1,$i+1..n]),i=1..n)]
%p A133922   fi;
%p A133922   M(A)*floor(n/2)!*2^floor(n/2)
%p A133922 end proc;
%p A133922 seq(F(n),n=1..27); # _Robert Israel_, Sep 12 2016
%Y A133922 Cf. A009679, A081123, A037223.
%K A133922 hard,nonn
%O A133922 1,2
%A A133922 _Leroy Quet_, Jan 07 2008
%E A133922 a(6)-a(15) from _Sean A. Irvine_, May 17 2010
%E A133922 a(16)-a(25) from _Robert Israel_, Sep 12 2016